17.某公司進(jìn)行公開招聘,應(yīng)聘者從10個(gè)考題中通過抽簽隨機(jī)抽取3個(gè)題目作答,規(guī)定至少答對(duì)2道者才有機(jī)會(huì)進(jìn)入“面試”環(huán)節(jié),小王只會(huì)其中的6道.
(1)求小王能進(jìn)入“面試”環(huán)節(jié)的概率;
(2)求抽到小王作答的題目數(shù)量的分布列.

分析 (1)設(shè)小王能進(jìn)入面試環(huán)節(jié)為事件A,由互斥事件概率加法公式能求出小王能進(jìn)入“面試”環(huán)節(jié)的概率.
(2)設(shè)抽到小王會(huì)作答的題目的數(shù)量為x,則x=0,1,2,3,分別求出相應(yīng)的概率,由此能求出抽到小王作答的題目數(shù)量X的分布列.

解答 解:(1)設(shè)小王能進(jìn)入面試環(huán)節(jié)為事件A,
則P(A)=$\frac{{C}_{6}^{2}{C}_{4}^{1}+{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{2}{3}$.
(2)設(shè)抽到小王會(huì)作答的題目的數(shù)量為x,則x=0,1,2,3,
P(X=0)=$\frac{{C}_{6}^{0}{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{1}{30}$,
P(X=1)=$\frac{{C}_{6}^{1}{C}_{4}^{2}}{{C}_{10}^{3}}$=$\frac{3}{10}$,
P(X=2)=$\frac{{C}_{6}^{2}{C}_{4}^{1}}{{C}_{10}^{3}}$=$\frac{1}{2}$,
P(X=3)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$,
∴抽到小王作答的題目數(shù)量X的分布列為:

 X 0 1 2
 P $\frac{1}{30}$ $\frac{3}{10}$ $\frac{1}{2}$ $\frac{1}{6}$

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若數(shù)列An:a1、a2、…an(n≥2)滿足|ak+1-ak|=d>0(k=1,2,…,n-1),則稱An為F數(shù)列:
(1)寫出所有滿足a1=a5=0的兩個(gè)F數(shù)列A5;
(2)若a1=d=1,n=2016,證明:F數(shù)列是遞增數(shù)列的充要條件是an=2016;
(3)記S(An)=a1+a2+…+an,對(duì)任意給定的正整數(shù)n(n≥2),且d∈N*,是否存在a1=0的F數(shù)列An,使得S(An)=0?如果存在,求出正整數(shù)n滿足的條件,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角α的終邊與x軸正半軸的夾角為30°,則α=2kπ±$\frac{π}{6}$,(k∈Z)(用弧度制表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的不等式(x+2)(a-x)≥0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N,且M∩N=[-1,2]
(1)求實(shí)數(shù)a的值;
(2)若在集合M∪N中任取一個(gè)實(shí)數(shù)x,求“x∈M∩N”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,2Sn=(n+1)an,若存在唯一的正整數(shù)n使得不等式an2-tan-2≤0成立,則實(shí)數(shù)t的取值范圍為[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-3y+12≥0\end{array}\right.$,則z=2x+y的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某農(nóng)戶計(jì)劃種植兩種農(nóng)作物,種植面積不超過20畝,投入資金不超過15萬元,假設(shè)兩種農(nóng)作物一年的產(chǎn)量、成本和售價(jià)如表:
 年產(chǎn)量/畝 年種植成本/畝  每噸售價(jià)
作物Ⅰ3噸 1萬元 0.6萬元 
作物Ⅱ5噸  0.5萬元 0.3萬元
(Ⅰ)設(shè)作物Ⅰ和作物Ⅱ的種植面積分別為x,y(單位:畝),用x,y列出滿足限制使用要求的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么作物Ⅰ和作物Ⅱ的種植面積(單位:畝)分別為多少?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某人訂了一份報(bào)紙,送報(bào)人可能在早上6:30~7:30之間把報(bào)紙送到他家,他離開家去工作的時(shí)間在早上7:00~8:00之間,則他離開家前能得到報(bào)紙的概率是(  )
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案