14.某班有56名學(xué)生,現(xiàn)有56張獎票,其中55張無獎,1張有獎,全班學(xué)生按照學(xué)號依次抽取,則第一個抽獎的學(xué)生甲和最后一個抽獎的學(xué)生乙中獎的概率關(guān)系是( 。
A.P=PB.P<PC.P>PD.不能確定

分析 由隨機(jī)事件概率計(jì)算公式得第一個抽獎的學(xué)生甲和最后一個抽獎的學(xué)生乙中獎的概率都是$\frac{1}{56}$.

解答 解:∵某班有56名學(xué)生,現(xiàn)有56張獎票,其中55張無獎,1張有獎,
全班學(xué)生按照學(xué)號依次抽取,
∴由隨機(jī)事件概率計(jì)算公式得第一個抽獎的學(xué)生甲和最后一個抽獎的學(xué)生乙中獎的概率都是$\frac{1}{56}$,
∴P=P
故選:A.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意概率概念及性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如表提供了某廠生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
x246810
y565910
(1)請根據(jù)表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)20噸甲產(chǎn)品的生產(chǎn)能耗是多少噸標(biāo)準(zhǔn)煤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的不等式(x+2)(a-x)≥0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N,且M∩N=[-1,2]
(1)求實(shí)數(shù)a的值;
(2)若在集合M∪N中任取一個實(shí)數(shù)x,求“x∈M∩N”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-3y+12≥0\end{array}\right.$,則z=2x+y的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列不等式中,解集為實(shí)數(shù)集R的是( 。
A.x2+4x+4>0B.|x|>0C.x2-x+1≥0D.$\frac{1}{x}$-1<$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某農(nóng)戶計(jì)劃種植兩種農(nóng)作物,種植面積不超過20畝,投入資金不超過15萬元,假設(shè)兩種農(nóng)作物一年的產(chǎn)量、成本和售價如表:
 年產(chǎn)量/畝 年種植成本/畝  每噸售價
作物Ⅰ3噸 1萬元 0.6萬元 
作物Ⅱ5噸  0.5萬元 0.3萬元
(Ⅰ)設(shè)作物Ⅰ和作物Ⅱ的種植面積分別為x,y(單位:畝),用x,y列出滿足限制使用要求的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么作物Ⅰ和作物Ⅱ的種植面積(單位:畝)分別為多少?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)S一枚均勻骰子二次,所得點(diǎn)數(shù)之和為10的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函數(shù),則使f(x)>4成立的x的取值范圍為(0,${log}_{2}\frac{5}{3}$ ).

查看答案和解析>>

同步練習(xí)冊答案