19.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)在線段EF上是否存在點M,使得平面MAB與平面FCB所成銳二面角的平面角為θ,且滿足cosθ=$\frac{{\sqrt{5}}}{5}$?若不存在,請說明理由;若存在,求出FM的長度.

分析 (1)如圖所示的等腰梯形ABCD中,經(jīng)過點C,D分別作CP⊥AB,DQ⊥AB,垂足為P,Q.利用矩形的性質(zhì)可得PQ,在△ABC中,利用余弦定理可得AC2=3,利用勾股定理的逆定理可得AC⊥CB.再利用面面垂足的性質(zhì)定理即可證明BC⊥平面ACFE.
(2)如圖所示,建立空間直角坐標(biāo)系.設(shè)M(a,0,1),設(shè)平面ABM的法向量$\overrightarrow{m}$=(x,y,z),可得$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=0}\\{\overrightarrow{m}•\overrightarrow{MB}=0}\end{array}\right.$,取平面BCE的法向量$\overrightarrow{n}$=(1,0,0).利用$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\sqrt{5}}{5}$,$a∈[0,\sqrt{3}]$.即可得出.

解答 (1)證明:如圖所示的等腰梯形ABCD中,
經(jīng)過點C,D分別作CP⊥AB,DQ⊥AB,垂足為P,Q,
則CDQP為矩形,PQ=1.在Rt△BCP中,∠B=60°,則BP=$\frac{1}{2}$BC=1,
同理可得AQ=$\frac{1}{2}$,∴AB=2.
在△ABC中,AC2=12+22-2×1×2×cos60°=3,
∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥CB.
又∵四邊形ACFE為矩形,平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,∴BC⊥平面ACFE.
(2)解:如圖所示,建立空間直角坐標(biāo)系.
C(0,0,0),A($\sqrt{3}$,0,0),B(0,1,0),E(0,0,1),
設(shè)M(a,0,1),
$\overrightarrow{AB}$=(-$\sqrt{3}$,1,0),$\overrightarrow{MB}$=(-a,1,-1),$\overrightarrow{CB}$=(0,1,0),
$\overrightarrow{CE}$=(0,0,1),
設(shè)平面ABM的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=0}\\{\overrightarrow{m}•\overrightarrow{MB}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-\sqrt{3}x+y=0}\\{-ax+y-z=0}\end{array}\right.$,
取$\overrightarrow{m}$=$(1,\sqrt{3},\sqrt{3}-a)$.
取平面BCE的法向量$\overrightarrow{n}$=(1,0,0).
由$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{1+3+(\sqrt{3}-a)^{2}}}$,
由題意可得:$\frac{1}{\sqrt{4+(\sqrt{3}-a)^{2}}}$=$\frac{\sqrt{5}}{5}$,$a∈[0,\sqrt{3}]$.
解得a=$\sqrt{3}$-1.
因此在線段EF上點M$(\sqrt{3}-1,0,1)$,使得平面MAB與平面FCB所成銳二面角的平面角為θ,且滿足cosθ=$\frac{{\sqrt{5}}}{5}$.
FM=$\sqrt{3}$-1.

點評 本題考查了空間位置關(guān)系、等腰梯形的性質(zhì)、直角三角形的邊角關(guān)系、法向量的應(yīng)用、數(shù)量積運算性質(zhì)、向量夾角公式,考查了空間想象能力、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在極坐標(biāo)系中,圓ρ=-2sin θ的圓心的極坐標(biāo)是.( 。
A.(0,-1)B.( 1,0)C.(1,-$\frac{π}{2}$)D.(1,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=3,∠ACB=$\frac{π}{2}$,D,E分別為線段AB,BC上的點,且CD=DE=$\sqrt{2}$,CE=2,AC=$\frac{3}{2}$.
(1)證明:DE⊥平面PCD
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,棱長都相等的三棱錐A-BCD中,E、F分別是棱AB、CD的中點,異面直線AD與EF所成的角是(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}}$)的圖象與x軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{4}$,且圖象過點M($\frac{π}{3},-1}$)
(1)求f(x)的解析式;       
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,$\frac{π}{2}}$]上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,若b+c=2a,則3sinA=5sinB,則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=log2$\sqrt{x-1}$的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.海上有 A,B兩個小島相距 10nmile,從 A島望C島和 B 島成 60° 的視角,從B島望 C島和 A島成75°的視角,則 B,C間的距離為(  )
A.10$\sqrt{3}$nmileB.$\frac{10\sqrt{6}}{3}$nmileC.5$\sqrt{2}$nmileD.5$\sqrt{6}$nmile

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{1}{\sqrt{1-lo{g}_{2}x}}$的定義域是( 。
A.(0,2)B.(0,2]C.(2,+∞)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案