已知數(shù)列{an}中,a1=
1
3
,an=an-1
2n-3
2n-1
(n≥2),則an=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:化簡已知的表達式,利用“累乘法”,求解數(shù)列的通項公式即可.
解答: 解:∵數(shù)列{an}中,a1=
1
3
,an=an-1
2n-3
2n-1
(n≥2),可得
an
an-1
=
2n-3
2n-1

an
a1
=
an
an-1
an-1
an-2
a3
a2
a2
a1
=
2n-3
2n-1
2n-5
2n-3
2n-7
2n-5
3
5
1
3
=
1
2n-1

an=
1
6n-3

故答案為:
1
6n-3
點評:本題考查遞推關(guān)系式的應用,數(shù)列通項公式的求法,數(shù)列掌握“類乘法”是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)A,B為銳角三角形的兩個內(nèi)角,則復數(shù)cos(A+B)+icos(A-B)對應的點位于復平面的(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右兩個焦點,若在雙曲線的右支上存在一點P,使(
OP
+
OF2
)•
F2P
=0(O為原點)且|PF1|=
3
|PF2|,則雙曲線的離心率為( 。
A、
5
+1
2
B、
5
-1
C、
3
+1
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,異面直線A1B與B1C1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,過F1作圓:x2+y2=
a2
4
的切線,切點為E,延長F1E交雙曲線右支于點P,若|OP|=
1
2
|F1F2|(O為坐標原點),則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在實數(shù)x滿足|x-2|+|x-m|<5,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知PA⊥矩形ABCD所在的平面,E,F(xiàn)分別為AB,PC的中點,
(1)證明:EF∥平面PAD;
(2)若PA=AD,求證:EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖及其尺寸如圖,則該幾何體的表面積為( 。
A、24πB、15π
C、15D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①不等式(m-1)x2-(1-m)x+m>0對任意實數(shù)x都成立,則實數(shù)m的范圍是m>1;
②如果實數(shù)x,y滿足(x-2)2+y2=3,則
y
x
的最大值為
3
;
③等差數(shù)列{an}的前n項和為Sn,若S13>0,S14<0,則S7為Sn的最大值;
④若0<x<
1
2
,則x
1-4x2
的最大值是
1
4

其中正確的命題序號是
 
(把所有正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案