分析 (1)利用等比數(shù)列的通項(xiàng)公式及其求和公式即可得出.
(2)利用等比數(shù)列的求和公式即可得出.
解答 解:(1)∵a2=2.S3=7,由${S_3}=\frac{2}{q}+2+2q=7$,
解得$q=2,q=\frac{1}{2}$,又∵q>1,∴q=2,
故a1=1,所以${a_n}={2^{n-1}},{S_n}=\frac{{1(1-{2^n})}}{1-2}={2^n}-1$.
(2)∵${a_n}={2^{n-1}}$,∴${a_n}^2={4^{n-1}}$,
∴${a_1}^2+{a_2}^2+…{a_n}^2=\frac{{1(1-{4^n})}}{1-4}=\frac{{{4^n}-1}}{3}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,-1} | B. | {0,$\frac{1}{2}}\right\$} | C. | {-1,$\frac{1}{2}}\right\$} | D. | {-1,0,$\frac{1}{2}}\right\$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\stackrel{∧}{y}$=2x-2.1 | B. | $\stackrel{∧}{y}$=-2x+9.5 | C. | $\stackrel{∧}{y}$=0.3x+2.6 | D. | $\stackrel{∧}{y}$=-0.3x+4.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com