19.已知數(shù)列{an}的首項為a1=$\frac{1}{2}$,且2an+1=an(n∈N+).
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{n}{{a}_{n}}$,求{bn}的前n項和Tn

分析 (1)由等比數(shù)列的定義和通項公式,即可得到所求;
(2)求得bn=$\frac{n}{{a}_{n}}$=n•2n.由數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.

解答 解。1)由于數(shù)列{an}滿足a1=$\frac{1}{2}$,且2an+1=an(n∈N+).
所以數(shù)列{an}是首項為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數(shù)列.
∴an=$\frac{1}{2}$×($\frac{1}{2}$)n-1=($\frac{1}{2}$)n
(2)由已知bn=$\frac{n}{{a}_{n}}$=n•2n
∴Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n
∴2Tn=1×22+2×23+…+(n-2)•2n-1+(n-1)•2n+n•2n+1
∴相減可得-Tn=1×2+1×22+1×23+…+1×2n-1+1×2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1
=2n+1-2-n•2n+1,
∴Tn=(n-1)•2n+1+2.

點評 本題考查等比數(shù)列的定義和通項公式、求和公式的運用,考查數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.計算lg0.014=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列有關(guān)命正確的是(  )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.命題“?x∈(1,+∞),使得x2+x-1<0”的否定是:“?x∈(1,+∞),均有x2+x-1≥0”
C.“x=-1是x2-5x-6=0”必要不充分條件
D.命題“已知x,y∈R,若x≠1,或y≠4則x+y≠5”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=2,an+1an=an-1,則a2016值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=2,公比為q,且b2+S2=16,4S2=qb2
(1)求an與bn;
(2)設(shè)數(shù)列{cn}滿足cn=$\frac{1}{{S}_{n}}$,求cn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的通項公式是an=(-1)n-1(n-1),Sn是其前n項和,則S15=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A、B、C是半徑為1的球面上三個定點,且AB=AC=BC=1,高為$\frac{{\sqrt{6}}}{2}$的三棱錐P-ABC的頂點P位于同一球面上,則動點P的軌跡所圍成的平面區(qū)域的面積是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點B(0,-1).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)直線l:y=k(x+2)交橢圓于P、Q兩點,若$\overrightarrow{BP}$•$\overrightarrow{BQ}$<0,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$=($\frac{\sqrt{3}}{3}$sinx,2cosx),$\overrightarrow$=(3,-$\frac{1}{2}$),x∈R.
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow$,試求f(x)的值域;
(2)若x=$\frac{π}{3}$,且滿足2$\overrightarrow{a}$-$\overrightarrow$與$λ\overrightarrow{a}$+$\overrightarrow$相互垂直,求λ的值.

查看答案和解析>>

同步練習冊答案