分析 根據(jù)所給的二項式,利用二項展開式的通項公式寫出第r+1項,整理成最簡形式,令x的指數(shù)為$\frac{3}{2}$求得r,再代入系數(shù)求出結(jié)果.
解答 解:根據(jù)所給的二項式寫出展開式的通項,
Tr+1=C6r${x}^{\frac{6-r}{2}}$(-a)rx-r=C6r(-a)r${x}^{\frac{6-3r}{2}}$,
展開式中含x${\;}^{\frac{3}{2}}$的項的系數(shù)為30,
∴$\frac{6-3r}{2}$=$\frac{3}{2}$
∴r=1,
∴C61(-a)=30,
解得a=-5,
故答案為:-5.
點評 本題考查二項式定理的應(yīng)用,本題解題的關(guān)鍵是正確寫出二項展開式的通項,在這種題目中通項是解決二項展開式的特定項問題的工具.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1-{2}^{10}}{3}$ | B. | -$\frac{1-{2}^{10}}{3}$ | C. | 210-1 | D. | 1-210 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1-\sqrt{2},\sqrt{2}]$ | B. | $[1-\sqrt{2},\sqrt{2}]$ | C. | $[\frac{1}{2},\sqrt{2}]$ | D. | $(\frac{1}{2},\sqrt{2}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $|{\overrightarrow a}|=|{\overrightarrow b}|$ | B. | $\overrightarrow a⊥\overrightarrow b$ | C. | $(\overrightarrow a-\overrightarrow b)∥\overrightarrow a$ | D. | $\overrightarrow a•\overrightarrow b=8$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com