15.已知數(shù)列{an}滿足:an+1+2an=0,且a2=2,則{an}前10項和等于( 。
A.$\frac{1-{2}^{10}}{3}$B.-$\frac{1-{2}^{10}}{3}$C.210-1D.1-210

分析 通過an+1+2an=0可確定數(shù)列{an}是公比為-2的等比數(shù)列,進而通過a2=2可知首項a1=-1,利用等比數(shù)列的求和公式計算即得結(jié)論.

解答 解:∵an+1+2an=0,
∴數(shù)列{an}是公比為-2的等比數(shù)列,
又∵a2=2,
∴a1=$\frac{1}{2}$(0-a2)=-1,
∴所求值為$\frac{-[1-(-2)^{10}]}{1-(-2)}$=-$\frac{1-{2}^{10}}{3}$,
故選:B.

點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.若a<0,則關于x的不等式x2-4ax-5a2>0的解集是( 。
A.(-∞,-a)∪(5a,+∞)B.(-∞,5a)∪(-a,+∞)C.(5a,-a)D.(a,-5a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在空間直角坐標系0-xyz中,A(0,0,2),B(0,2,0),C(2,2,2),則三棱錐O-ABC外接球的表面積為(  )
A.B.4$\sqrt{3}$πC.12πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}的通項公式an=5-n,其前n項和為Sn,將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使對任意n∈N*,總有Sn<Tn+λ恒成立,則實數(shù)λ的取值范圍是( 。
A.λ≥2B.λ>3C.λ≥3D.λ>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,滿足S2+a1=0,a3=12.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在正整數(shù)n,使得Sn>2016?若存在,求出符合條件的n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d為實常數(shù))在x=0處取得極小值2,且曲線y=f(x)在x=3處的切線方程為3x+y-11=0.
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)h1(x)=ex+t[f′(x)+x2-x],h2(x)=t[f′(x)+x2-x]-lnx.其中t為實常數(shù),試探究是否存在區(qū)間M,使得h1(x)和h2(x)在區(qū)間M上具有相同的單調(diào)性,若存在,說明區(qū)間M應滿足的條件及對應t的取值范圍,并指出h1(x)和h2(x)在區(qū)間M上的單調(diào)性;若不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x<0)}\\{-{x}^{2}(x≥0)}\end{array}\right.$,則不等式f[f(x)]≤3的解集為(-∞,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和${S_n}=-{n^2}+26n$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)求a2+a5+a8+…+a3n-1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知($\sqrt{x}$-$\frac{a}{x}$)6的展開式中含x${\;}^{\frac{3}{2}}$的項的系數(shù)為30,則實數(shù)a=-5.

查看答案和解析>>

同步練習冊答案