1.在Rt△ABC中,∠A=90°,AB=AC=2,點(diǎn)D為AC中點(diǎn),點(diǎn)E滿足$\overrightarrow{BE}=\frac{1}{3}\overrightarrow{BC}$,則$\overrightarrow{AE}•\overrightarrow{BD}$=-2.

分析 由已知畫出圖形,結(jié)合向量的加法與減法法則把$\overrightarrow{AE}、\overrightarrow{BD}$用$\overrightarrow{AB}、\overrightarrow{AC}$表示,展開$\overrightarrow{AE}•\overrightarrow{BD}$后代值得答案.

解答 解:如圖,
∵$\overrightarrow{BE}=\frac{1}{3}\overrightarrow{BC}$,
∴$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})=\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,
又D為AC中點(diǎn),
∴$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AC}-\overrightarrow{AB}$,
則$\overrightarrow{AE}•\overrightarrow{BD}$=$(\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC})•(\frac{1}{2}\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{6}{\overrightarrow{AC}}^{2}-\frac{2}{3}{\overrightarrow{AB}}^{2}$=$(\frac{1}{6}-\frac{2}{3})×4=-2$.
故答案為:-2.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查向量的加法與減法法則,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=a-$\frac{1}{|x|}$,a∈R.
(1)若函數(shù)f(x)的定義域和值域均為[$\frac{1}{2}$,2],求實(shí)數(shù)a的值.
(2)設(shè)m<n<0,試問是否存在實(shí)數(shù)a,使函數(shù)f(x)的定義域與值域均為[m,n]?若存在,請(qǐng)求出a的取值范圍,并指出m,n所滿足的條件;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=$\frac{a-sinx}{cosx}$在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[$\sqrt{3}$,+∞)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,若CB=CD=CF=a.
(Ⅰ)求證:平面BDE⊥平面AED;
(Ⅱ)求三棱錐A-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知一次函數(shù)f(x)滿足f(x+1)+f(x)=2x+3對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)是定義在區(qū)間[-1,1]上的偶函數(shù),當(dāng)x∈[0,1]時(shí),g(x)=f(x),求g(x)的
解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)f(x)滿足:①任意x∈R,有f(x)+f(2-x)=0;②當(dāng)x≥1時(shí),f(x)=|x-a|-1,(a>0),若x∈R,恒有f(x)>f(x-m),則m的取值范圍是( 。
A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.大學(xué)開設(shè)甲、乙、丙三門選修課供學(xué)生任意選修(也可不選),假設(shè)學(xué)生是否選修哪門課彼此互不影響.已知某學(xué)生只選修甲一門課的概率為0.08,選修甲和乙兩門課的概率為0.12,至少選修一門的概率是0.88.
(1)求該學(xué)生選修甲、乙、丙的概率分別是多少?
(2)用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.隨著2022年北京冬奧會(huì)的成功申辦,冰雪項(xiàng)目已經(jīng)成為北京市民冬季休閑娛樂的重要方式.為普及冰雪運(yùn)動(dòng),寒假期間學(xué)校組織高一年級(jí)學(xué)生參加冬令營(yíng).其中一班有3名男生和1名女生參加,二班有2名男生和2名女生參加.活動(dòng)結(jié)束時(shí),要從參加冬令營(yíng)的學(xué)生中選出部分學(xué)生進(jìn)行展示.
(Ⅰ)若要從參加冬令營(yíng)的這8名學(xué)生中任選4名,求選出的4名學(xué)生中有女生的概率;
(Ⅱ)若要從一班和二班參加冬令營(yíng)的學(xué)生中各任選2名,設(shè)隨機(jī)變量X表示選出的女生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AB=AC=AD=BC=CD=4,BD=4$\sqrt{2}$,E,F(xiàn)分別為AC,CD的中點(diǎn),G為線段BD上一點(diǎn),且BE∥平面AGF.
(Ⅰ)求BG的長(zhǎng);
(Ⅱ)當(dāng)直線BE∥平面AGF時(shí),求四棱錐A-BCFG的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案