分析 (Ⅰ)求得拋物線的焦點坐標,由題意可得直線l的方程,代入拋物線方程,運用韋達定理,結(jié)合向量的數(shù)量積的坐標表示,計算即可得到所求值;
(Ⅱ)設直線l:x=my+1,代入拋物線的方程,運用韋達定理和向量的坐標,得到m,t的關(guān)系式,求得|m|的范圍,注意運用換元法和函數(shù)的單調(diào)性,即可得到直線l的斜率的范圍.
解答 解:(Ⅰ)拋物線E:y2=4x的焦點是F(1,0),
直線l的斜率為1,可得直線l的方程為y=x-1,
代入拋物線的方程可得,x2-6x+1=0,
設A(x1,y1),B(x2,y2),
可得x1+x2=6,x1x2=1,
則$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1
=2-6+1=-3;
(Ⅱ)設直線l:x=my+1,
代入y2=4x,可得y2-4my-4=0,
設A(x1,y1),B(x2,y2),
可得y1+y2=4m,y1y2=-4,
由$\overrightarrow{FB}$=t$\overrightarrow{AF}$,可得y2=t(0-y1),
解得y1=$\frac{4m}{1-t}$,y2=-$\frac{4mt}{1-t}$,
即有-4=-t•($\frac{4m}{1-t}$)2,
由t∈[2,4],可得
2|m|=$\sqrt{t}$-$\frac{1}{\sqrt{t}}$,
令u=$\sqrt{t}$($\sqrt{2}$≤u≤2),則y=u-$\frac{1}{u}$在[$\sqrt{2}$,2]上遞增,
即有y∈[$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$],即|m|∈[$\frac{\sqrt{2}}{4}$,$\frac{3}{4}$].
則直線l的斜率的絕對值范圍是[$\frac{4}{3}$,2$\sqrt{2}$],
即有直線l的斜率的范圍為[-2$\sqrt{2}$,-$\frac{4}{3}$]∪[$\frac{4}{3}$,2$\sqrt{2}$].
點評 本題考查拋物線的方程及運用,主要是聯(lián)立直線方程,運用韋達定理,考查直線的斜率公式和直線方程的運用,同時考查向量的坐標運算,注意運用方程思想和轉(zhuǎn)化思想,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {1,3,5} | D. | {4,6,7,8} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $4-\sqrt{5}$ | C. | $3-\sqrt{5}$ | D. | $4-2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 14 | B. | 16 | C. | 18 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | 45 | 30 | 75 |
每周平均體育運動時間超過4小時 | 165 | 60 | 225 |
總計 | 210 | 90 | 300 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com