已知α∈(
2
,3π),化簡(jiǎn)
1-sinα
+
1+sinα
=(  )
A、-2cos
α
2
B、2cos
α
2
C、-2sin
α
2
D、2sin
α
2
考點(diǎn):二倍角的正弦
專題:三角函數(shù)的求值
分析:根據(jù)三角函數(shù)的倍角公式進(jìn)行化簡(jiǎn)即可.
解答: 解:
1-sinα
+
1+sinα
=
(sin
α
2
-cos
α
2
)2
+
(sin
α
2
+cos
α
2
)2
=|sin
α
2
-cos
α
2
|+|sin
α
2
+cos
α
2
|,
∵α∈(
2
,3π),
α
2
∈(
4
,
2
),
∴sin
α
2
<cos
α
2
<0,
則=|sin
α
2
-cos
α
2
|+|sin
α
2
+cos
α
2
|=-(sin
α
2
-cos
α
2
)-(sin
α
2
+cos
α
2
)=-2sin
α
2
,
故選:C
點(diǎn)評(píng):本題主要考查三角函數(shù)式子的化簡(jiǎn),利用三角函數(shù)的倍角公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x≤-1或x≥4},B={x|2a≤x≤a+2}.若A∩B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c成等差數(shù)列,則函數(shù)y=2ax2+3bx+c與x軸交點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2+2)(
1
x2
-mx)5展開式中x2項(xiàng)的系數(shù)為250,則實(shí)數(shù)m的值為 ( 。
A、±5
B、5
C、±
5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩),經(jīng)預(yù)測(cè),一個(gè)橋墩的費(fèi)用為32萬(wàn)元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+x)x萬(wàn)元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其它因素,記工程總費(fèi)用為y萬(wàn)元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=80米時(shí),需要新建多少個(gè)橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的公差為d,若數(shù)列{2a1an}為遞減數(shù)列,則有下列四個(gè)命題:
 ①d>0
②d<0
③a1d>0
④a1d<0
請(qǐng)把正確命題的序號(hào)填上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線2ax+by-2=0(a>0,b>0)被圓x2+y2-2x-4y-4=0截得的弦長(zhǎng)為6,m=b+
2
a
,n=a+
1
2b
,則m+n的最小值為.
A、
9
2
B、5
C、
11
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}和等比數(shù)列{bn}首項(xiàng)都是1,公差和公比都是2,則ab1+ab2+ab4=( 。
A、17B、19C、21D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
1
1+sin2x
+
1
1+cos2x
+
1
2+tan2x
+
1
2+cot2x
=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案