【題目】設(shè)橢圓:(),左、右焦點(diǎn)分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn)
①求的值;
②令,求的面積的最大值.
【答案】(1)(2)①②
【解析】
(1)運(yùn)用圓與圓的位置關(guān)系,和的關(guān)系,計(jì)算即可得到,進(jìn)而得到橢圓的方程;
(2)求得橢圓的方程,①設(shè),,求得的坐標(biāo),分別代入橢圓的方程,化簡(jiǎn)整理,即可得到所求值;
②設(shè),將直線代入橢圓的方程,運(yùn)用韋達(dá)定理,三角形的面積公式,將直線代入橢圓的方程,由判別式大于0,可得的范圍,結(jié)合二次函數(shù)的最值,,的面積為,即可得到所求的最大值.
解:(1)由題意可知,,可得,
又
,
,
即有橢圓的方程為;
(2)由(1)知橢圓的方程為,
①設(shè),,由題意可知,
,由于,
代入化簡(jiǎn)可得,
所以,即;
②設(shè),,將直線代入橢圓的方程,可得
,由,可得,③
則有,,
所以,
由直線與軸交于,
則的面積為
設(shè),則,
將直線代入橢圓的方程,
可得,
由可得,④
由③④可得,則在遞增,即有取得最大值,
即有,即,取得最大值,
由①知,的面積為,
即面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果,已知正方形的邊長(zhǎng)為2,平行軸,頂點(diǎn),和分別在函數(shù),和的圖像上,則實(shí)數(shù)的值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二理科1班共有50名學(xué)生參加學(xué)業(yè)水平模擬考試,成績(jī)(單位:分,滿分100分)大于或等于90分的為優(yōu)秀,其中語(yǔ)文成績(jī)近似服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.
(1)這50名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)成績(jī)優(yōu)秀的大約各有多少人?
(2)如果語(yǔ)文和數(shù)學(xué)兩科成績(jī)都優(yōu)秀的共有4人,從語(yǔ)文優(yōu)秀或數(shù)學(xué)優(yōu)秀的這些同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都優(yōu)秀的有X人,求X的分布列和數(shù)學(xué)期望;
(3)根據(jù)(1)(2)的數(shù)據(jù),是否有99%以上的把握認(rèn)為語(yǔ)文成績(jī)優(yōu)秀的同學(xué),數(shù)學(xué)成績(jī)也優(yōu)秀?
語(yǔ)文優(yōu)秀 | 語(yǔ)文不優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | |||
數(shù)學(xué)不優(yōu)秀 | |||
合計(jì) |
附:①若,則,;②;
③
0.1 | 0.05 | 0.025 | 0.010 | p>0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)國(guó)家收購(gòu)某種農(nóng)產(chǎn)品的價(jià)格是1.2元/kg,其中征稅標(biāo)準(zhǔn)為每100元征8元(即稅率為8個(gè)百分點(diǎn),8%),計(jì)劃可收購(gòu)kg.為了減輕農(nóng)民負(fù)擔(dān),決定稅率降低個(gè)百分點(diǎn),預(yù)計(jì)收購(gòu)可增加個(gè)百分點(diǎn).
(1)寫出稅收(元)與的函數(shù)關(guān)系;
(2)要使此項(xiàng)稅收在稅率調(diào)節(jié)后不低于原計(jì)劃的78%,確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)的周期為,圖象的一個(gè)對(duì)稱中心為將函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將所有圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)當(dāng),求實(shí)數(shù)與正整數(shù),使在恰有2019個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為,點(diǎn)E,F,G分別為棱AB,,的中點(diǎn),下列結(jié)論中,正確結(jié)論的序號(hào)是___________.
①過(guò)E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;
②平面EFG;
③平面;
④異面直線EF與所成角的正切值為;
⑤四面體的體積等于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),,對(duì)于定義在上的函數(shù),有下述命題:
①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱”;
②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于直線對(duì)稱”;
③“是的一個(gè)周期”的充要條件是“對(duì)任意的,都有”;
④“函數(shù)與的圖像關(guān)于軸對(duì)稱”的充要條件是“”
其中正確命題的序號(hào)是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義域R上的奇函數(shù).
(1)設(shè)是圖像上的兩點(diǎn),求證:直線AB的斜率>0;
(2)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在新冠肺炎疫情的影響下,南充高中響應(yīng)“停課不停教,停課不停學(xué)”的號(hào)召進(jìn)行線上教學(xué),高二年級(jí)的甲乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)測(cè)試成績(jī)選出某班的5名學(xué)生參加數(shù)學(xué)競(jìng)賽決賽,已知這次測(cè)試他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.
(1)求出x,y的值,且分別求甲乙兩個(gè)班中5名學(xué)生成績(jī)的方差,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?
(2)從成績(jī)?cè)?/span>85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來(lái)自甲班的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com