12.已知命題p:對(duì)?x∈R,x2≥0;命題q:若α為第一象限角,β為第二象限角,則α<β,則以下命題為假命題的是.
A.(¬p)∨(¬q)B.p∨qC.(¬p)∨qD.p∧(¬q)

分析 分別判斷命題p,q的真假性,根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷即可.

解答 解:命題p:對(duì)?x∈R,x2≥0,為真命題.
命題q:若α為第一象限角,β為第二象限角,則α<β為假命題,比如α=390°,β=120°,則α<β不成立,
則(¬p)∨q為假命題,其余為真命題.
故選:C.

點(diǎn)評(píng) 本題主要考查復(fù)合命題的真假判斷,根據(jù)條件判斷命題p,q的真假是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過定點(diǎn)A(-a,0)(a>0)作任意直線交y軸于B點(diǎn),在直線上取一點(diǎn)P,使|BP|=|OB|,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=1-2sin(x+$\frac{π}{8}$)[sin(x+$\frac{π}{8}$)-cos(x+$\frac{π}{8}$)],x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x+$\frac{π}{8}$)在區(qū)間[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)D(x)=$\left\{\begin{array}{l}1\\ 0\end{array}\right.\begin{array}{l}{\;}&{x為有理數(shù)}\\{\;}&{x為無理數(shù)}\end{array}$,則( 。
A.D(D(x))=1,0是D(x)的一個(gè)周期B.D(D(x))=1,1是D(x)的一個(gè)周期
C.D(D(x))=0,1是D(x)的一個(gè)周期D.D(D(x))=0,D(x)的最小正周期不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓C經(jīng)過直線x+y-1=0與x2+y2=4的交點(diǎn),且圓C的圓心為(-2,-2),則過點(diǎn)(2,4)向圓C作切線,所得切線方程為( 。
A.5x-12y+38=0或3x-4y+10=0B.12x-5y+4=0或3x-4y+10=0
C.5x-12y+38=0或x=2D.3x-4y+10=0或x=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對(duì)稱的圓為C,則圓C的方程為( 。
A.(x+1)2+(y+2)2=9B.(x+1)2+(y-2)2=9C.(x-1)2+(y-2)2=9D.(x-1)2+(y+2)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.現(xiàn)有兩封e-mail需要寄出,且有4個(gè)電子郵箱可以選擇,則兩封信都投到同一個(gè)電子郵箱的概率是( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平行四邊形ABCD中,AB=8,AD=5,$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=( 。
A.22B.23C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,橢圓C的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx-$\sqrt{3}$與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案