10.已知f′(x)是定義在R上的函數(shù)f(x)的導(dǎo)函數(shù),f(0)=1,且f′(x)-2f(x)=0,則f(x)>e的解集為($\frac{1}{2}$,+∞).

分析 根據(jù)題意,不妨設(shè)f(x)=e2x,x∈R,則f(x)在R上是單調(diào)增函數(shù),把不等式f(x)>e化為e2x>e,從而求出不等式的解集.

解答 解:根據(jù)題意,不妨設(shè)f(x)=e2x,x∈R,
則f′(x)=2e2x,滿足f(0)=e0=1,且f′(x)-2f(x)=0;
所以f(x)在R上是單調(diào)增函數(shù);
所以不等式f(x)>e等價于e2x>e,
∴2x>1,解得:x>$\frac{1}{2}$,
故不等式的解集是($\frac{1}{2}$,+∞),
故答案為:($\frac{1}{2}$,+∞).

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性問題,也考查了構(gòu)造函數(shù)的解題方法,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤3}\end{array}\right.$,則z=2x-3y的最小值是( 。
A.-7B.-6C.-5D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$
(1)若方程f(x)=4有兩個實(shí)根,求實(shí)數(shù)b的取值范圍;
(2)若f(f($\frac{5}{6}$))=4,求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{1-x}},\;x≤1}\\{1+{{log}_2}x,\;x>1}\end{array}}$,則滿足f(x)≤3的x的取值范圍為[1-log23,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)復(fù)數(shù)z=-3cosθ+isinθ.(i為虛數(shù)單位)
(1)當(dāng)θ=$\frac{4}{3}$π時,求|z|的值;
(2)當(dāng)θ∈[$\frac{π}{2}$,π]時,復(fù)數(shù)z1=cosθ-isinθ,且z1z為純虛數(shù),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\overrightarrow{AB}$=(3,1),向量$\overrightarrow{a}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{AB}$,則實(shí)數(shù)λ的值為( 。
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,∠BAC=120°,AD為角A的平分線,AC=3,AB=6,則AD的長是( 。
A.2B.2或4C.1或2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(a-2)x+4y=5-3a與直線l2:2x+(a+7)y=8垂直,則a=( 。
A.-4或-1B.4C.7或-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=f(x)的定義域?yàn)閇-1,1],求函數(shù)y=f(x+$\frac{1}{2}$)•f(x-$\frac{1}{2}$)的定義域?yàn)閇-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊答案