A. | -7 | B. | -6 | C. | -5 | D. | -3 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,求出最優(yōu)解即可求最小值.
解答 解:由z=2x-3y得y=$\frac{2}{3}x-\frac{z}{3}$,
作出不等式組對應的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{2}{3}x-\frac{z}{3}$,由圖象可知當直線y=$\frac{2}{3}x-\frac{z}{3}$,過點A時,直線y=$\frac{2}{3}x-\frac{z}{3}$截距最大,此時z最小,
由$\left\{\begin{array}{l}{x=3}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即A(3,4),
代入目標函數(shù)z=2x-3y,
得z=2×3-3×4=6-12=-6.
∴目標函數(shù)z=2x-3y的最小值是-6.
故選:B.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | 2a>2b | C. | |a|>|b| | D. | a3<b3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∨q | B. | p∧q | C. | (¬p)∧(¬q) | D. | p∨(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (¬p)∨q | B. | p∧q | C. | p∨q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平面ACB1∥平面A1C1D,且兩平面的距離為$\frac{{\sqrt{3}}}{3}$ | |
B. | 點P在線段AB上運動,則四面體PA1B1C1的體積不變 | |
C. | 與所有12條棱都相切的球的體積為$\frac{{\sqrt{2}}}{3}$π | |
D. | M是正方體的內(nèi)切球的球面上任意一點,N是△AB1C外接圓的圓周上任意一點,則|MN|的最小值是$\frac{{\sqrt{3}-\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com