分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′($\frac{1}{2}$)=0,解出驗證即可;(2)求出函數(shù)的導(dǎo)數(shù),通過a的范圍,確定導(dǎo)函數(shù)的符號,求出函數(shù)f(x)的單調(diào)性,從而判斷f(x)的范圍.
解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=1+$\frac{2a-1}{{x}^{2}}$-$\frac{2a}{x}$,
∴f′($\frac{1}{2}$)=1+4(2a-1)-4a=0,解得:a=$\frac{3}{4}$,
∴a=$\frac{3}{4}$時,f′(x)=$\frac{(x-1)(2x-1)}{{2x}^{2}}$,
∴f(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,1)遞減,
f(x)在x=$\frac{1}{2}$處取得極值,
故a=$\frac{3}{4}$符合題意;
(2)f′(x)=1+$\frac{2a-1}{{x}^{2}}$-$\frac{2a}{x}$=$\frac{(x-1)[x-(2a-1)]}{{x}^{2}}$,
當(dāng)a≤1時,則2a-1≤1,
∴f′(x)>0在(1,+∞)恒成立,
函數(shù)f(x)遞增,
∴f(x)≥f(1)=2(1-a)≥0.
點評 本題考察了函數(shù)的單調(diào)性,函數(shù)的極值問題,導(dǎo)數(shù)的應(yīng)用,滲透了分類討論思想,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com