分析 由對(duì)數(shù)式的真數(shù)大于零,底數(shù)大于零且不等于1聯(lián)立不等式組求得答案.
解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{2sinx+1>0}\\{1-2cosx>0}\\{1-2cosx≠1}\end{array}\right.$,
由2sinx+1>0,得$-\frac{π}{6}+2kπ<x<\frac{7π}{6}+2kπ,k∈Z$;
由1-2cosx>0,得$\frac{π}{3}+2kπ<x<\frac{5π}{3}+2kπ,k∈Z$;
由1-2cosx≠1,得x$≠\frac{π}{2}+kπ,k∈Z$.
取交集得:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.
故答案為:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.
點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,考查了三角不等式的解法,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{3π}{8}$,$\frac{π}{8}$] | B. | [-$\frac{π}{8}$,$\frac{3π}{8}$] | C. | [$\frac{π}{8}$,$\frac{5π}{8}$] | D. | [$\frac{3π}{8}$,$\frac{7π}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | tan(-$\frac{π}{7}$) | B. | tan$\frac{9π}{8}$ | C. | tan35° | D. | tan(-142°) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3$\sqrt{2}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com