分析 (1)利用兩角差的正弦函數(shù)公式化簡(jiǎn)函數(shù)解析式可得f(x)=2sin(ωx+φ-$\frac{π}{6}$),由f(x)是偶函數(shù),可得φ=$\frac{2π}{3}$+kπ(k∈Z),結(jié)合范圍0<φ<π,可求φ,利用周期公式可求ω,即可求得函數(shù)解析式為f(x)=2cos 2x.利用誘導(dǎo)公式,特殊角的三角函數(shù)值即可求值得解.
(2)利用三角函數(shù)恒等變換的應(yīng)用可得解析式g(x)=2$\sqrt{2}$sin(2x+$\frac{3π}{4}$),令2x+$\frac{3π}{4}$=$\frac{π}{2}$+kπ,k∈Z,即可解得對(duì)稱軸方程,令-$\frac{π}{2}$+2kπ≤2x+$\frac{3π}{4}$≤$\frac{π}{2}$+2kπ,即可解得單調(diào)遞增區(qū)間,令$\frac{π}{2}$+2kπ≤2x+$\frac{3π}{4}$≤$\frac{3π}{2}$+2kπ,解得單調(diào)遞減區(qū)間.
解答 解:(1)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)
=2[$\frac{\sqrt{3}}{2}$sin(ωx+φ)-$\frac{1}{2}$cos(ωx+φ)
=2sin(ωx+φ-$\frac{π}{6}$).
因?yàn)閒(x)是偶函數(shù),
則φ-$\frac{π}{6}$=$\frac{π}{2}$+kπ(k∈Z),
所以φ=$\frac{2π}{3}$+kπ(k∈Z),
又因?yàn)?<φ<π,
所以φ=$\frac{2π}{3}$,
所以f(x)=2sin($ωx+\frac{π}{2}$)=2cosωx.
由題意得$\frac{2π}{ω}$=2•$\frac{π}{2}$,
所以ω=2.
故f(x)=2cos 2x.
因此$f(\frac{7π}{8})$=2cos$\frac{7π}{4}$=$\sqrt{2}$.
(2)g(x)=2cos 2x+2cos 2(x+$\frac{π}{4}$)
=2cos 2x+2cos(2x+$\frac{π}{2}$)
=2cos 2x-2sin 2x
=2$\sqrt{2}$sin(2x+$\frac{3π}{4}$),
令2x+$\frac{3π}{4}$=$\frac{π}{2}$+kπ,k∈Z,解得對(duì)稱軸x=-$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{3π}{4}$≤$\frac{π}{2}$+2kπ,解得:-$\frac{5π}{8}$+kπ≤x≤-$\frac{π}{8}$+kπ,k∈Z,
令$\frac{π}{2}$+2kπ≤2x+$\frac{3π}{4}$≤$\frac{3π}{2}$+2kπ,解得:-$\frac{π}{8}$+kπ≤x≤$\frac{3π}{8}$+kπ,k∈Z,
所以函數(shù)g(x)的對(duì)稱軸x=-$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z,
單調(diào)遞增區(qū)間為:[-$\frac{5π}{8}$+kπ,-$\frac{π}{8}$+kπ],k∈Z,單調(diào)遞減區(qū)間為:[-$\frac{π}{8}$+kπ,$\frac{3π}{8}$+kπ],k∈Z.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用及正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {dn}是等差數(shù)列 | B. | {Sn}是等差數(shù)列 | ||
C. | {d${\;}_{n}^{2}$}是等差數(shù)列 | D. | {S${\;}_{n}^{2}$}是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{{π^2}+4}$ | B. | $2\sqrt{{π^2}+1}$ | C. | $\sqrt{\frac{π^2}{4}+4}$ | D. | $\sqrt{\frac{π^2}{16}+4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0.2] | C. | [1,2] | D. | (1,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com