19.如圖,點(diǎn)列{An}、{Bn}分別在銳角兩邊(不在銳角頂點(diǎn)),且|AnAn+1|=|An+1An+2|,An≠An+2,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*(P≠Q(mào)表示點(diǎn)P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{dn}是等差數(shù)列B.{Sn}是等差數(shù)列
C.{d${\;}_{n}^{2}$}是等差數(shù)列D.{S${\;}_{n}^{2}$}是等差數(shù)列

分析 設(shè)銳角的頂點(diǎn)為O,再設(shè)|OA1|=a,|OB1|=c,|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,由于a,c不確定,判斷C,D不正確,設(shè)△AnBnBn+1的底邊BnBn+1上的高為hn,運(yùn)用三角形相似知識(shí),hn+hn+2=2hn+1,由Sn=$\frac{1}{2}$d•hn,可得Sn+Sn+2=2Sn+1,進(jìn)而得到數(shù)列{Sn}為等差數(shù)列

解答 解:設(shè)銳角的頂點(diǎn)為O,|OA1|=a,|OB1|=c,
|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,
由于a,c不確定,則{dn}不一定是等差數(shù)列,
{dn2}不一定是等差數(shù)列,
設(shè)△AnBnBn+1的底邊BnBn+1上的高為hn,
由三角形的相似可得$\frac{{h}_{n}}{{h}_{n+1}}$=$\frac{O{A}_{n}}{O{A}_{n+1}}$=$\frac{a+(n-1)b}{a+nb}$,$\frac{{h}_{n+2}}{{h}_{n+1}}$=$\frac{O{A}_{n+2}}{O{A}_{n+1}}$=$\frac{a(n+1)b}{a+nb}$,
兩式相加可得,$\frac{{h}_{n}+{h}_{n+2}}{{h}_{n+1}}$=$\frac{2a+2nb}{a+nb}$=2,
即有hn+hn+2=2hn+1,
由Sn=$\frac{1}{2}$d•hn,可得Sn+Sn+2=2Sn+1
即為Sn+2-Sn+1=Sn+1-Sn,
則數(shù)列{Sn}為等差數(shù)列.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的判斷,注意運(yùn)用三角形的相似和等差數(shù)列的性質(zhì),考查化簡整理的推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則z=$\frac{2}{a}$+$\frac{5}$的最小值是( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.2$\sqrt{10}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的右頂點(diǎn)為A,點(diǎn)P在橢圓上,且PF1⊥x軸,直線AP交y軸于點(diǎn)Q,若$\overrightarrow{AQ}$=3$\overrightarrow{QP}$,則橢圓的離心率等于( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cosα=-$\frac{1}{3}$,且α∈(-π,0),則α=arccos$\frac{1}{3}$-π(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\sqrt{3}$x,關(guān)于x的方程ax2+bx-$\sqrt{{a}^{2}-^{2}}$=0的兩根為m,n,則點(diǎn)P(m,n)( 。
A.在圓x2+y2=7內(nèi)B.在圓x2+y2=7上
C.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1內(nèi)D.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x(1-a|x|)+1(a>0),若f(x+a)≤f(x)對(duì)任意的x∈R恒成立,則實(shí)數(shù)a的取值范圍是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函數(shù)g(x)=f(x)+f(x+$\frac{π}{4}$)的對(duì)稱軸與單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某風(fēng)景區(qū)水面游覽中心計(jì)劃國慶節(jié)當(dāng)日投入之多3艘游船供游客觀光,過去10年的數(shù)據(jù)資料顯示每年國慶節(jié)當(dāng)日客流量X(單位:萬人)都大于1,并把客流量分成三段整理得下表:
國慶節(jié)當(dāng)日客流量X1<X<33≤X≤5X>5
頻數(shù)244
以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國慶節(jié)當(dāng)日客流量相互獨(dú)立.
(1)求未來連續(xù)3年國慶節(jié)當(dāng)日中,恰好有1年國慶節(jié)當(dāng)日客流量超過5萬人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國慶節(jié)當(dāng)日游船最多使用量:(單位:艘)受當(dāng)日客流量X(單位:萬人)的限制,其關(guān)聯(lián)關(guān)系如下表:
國慶節(jié)當(dāng)日客流量X1<X<33≤X≤5X>5
游船最多使用量123
若某艘游船國慶節(jié)當(dāng)日使用,則水面游覽中心國慶節(jié)當(dāng)日可獲得利潤3萬元,若某艘游船國慶節(jié)當(dāng)日不使用,則水面游覽中心國慶節(jié)當(dāng)日虧損0.5萬元,記Y(單位:萬元)表示該水面游覽中心國慶節(jié)當(dāng)日獲得總利潤,當(dāng)Y的數(shù)學(xué)期望最大時(shí)稱水面游覽中心在國慶節(jié)當(dāng)日效益最佳,問該水面游覽中心的國慶節(jié)當(dāng)日應(yīng)投入多少艘游船才能使該水面游覽中心在國慶節(jié)當(dāng)日效益最佳?

查看答案和解析>>

同步練習(xí)冊(cè)答案