.已知定義在R上的函數(shù)fx)=( a , b , c , d∈R )的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且x = 1時(shí),fx)取極小值。
(Ⅰ)求fx)的解析式;
(Ⅱ)當(dāng)x∈[-1,1]時(shí),圖象舊否存在兩點(diǎn),使得此兩面三刀點(diǎn)處的切線(xiàn)互相垂直?試證明你的結(jié)論;
(Ⅲ)若[-1,1]時(shí),求證:| f ()-f)|≤
(1)f(x)= 
(2) 當(dāng)x∈[-1,1]時(shí),圖象上不存在這樣的兩點(diǎn)使得結(jié)論成立
(3)同解析
Ⅰ)∵函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),
∴f(0)= 0,即4d = 0,∴d = 0
又f(-1)=" -" f(1),
即-a - 2b - c =" -a" + 2b – c ,∴b = 0
∴f(x)=+cx ,f ′(x)= 3a+c .
∵x = 1時(shí),f(x)取極小值,
∴ 3a + c = 0且 a + c = .
解得a =  ,c = .  
∴f(x)=
(Ⅱ)當(dāng)x∈[-1,1]時(shí),圖象上不存在這樣的兩點(diǎn)使得結(jié)論成立。
假設(shè)圖象上存在兩點(diǎn)A(,),B(,),使得過(guò)此兩點(diǎn)處的切線(xiàn)互相垂直,則由f ′(x)=(-1)知兩點(diǎn)處的切線(xiàn)斜率分別為=,
=,且 =" 1            " (*)
∈[-1,1],
-1≤0,-1≤0
∴(-1)(-1)≥0 此與(*)矛盾,故假設(shè)不成立
(Ⅲ)(理科)證明:f ′(x)=-1),令f ′(x)= 0,得x = ±1
∴x∈(-∞,-1)或x∈(1,+∞)時(shí),f ′(x)>0,x∈(-1,1)時(shí),f ′(x)<0
∴f(x)在[-1,1]上是減函數(shù),且(x)=f(-1)=,(x)=f(1)=.
∴在[-1,1]上| f(x)|≤,于是,∈[-1,1]時(shí),
|f()-f()|≤|f()|+|f()|≤ 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義在區(qū)間(0,)上的函f(x)滿(mǎn)足:(1)f(x)不恒為零;(2)對(duì)任何實(shí)數(shù)x、q,都有.
(1)求證:方程f(x)=0有且只有一個(gè)實(shí)根;
(2)若a>b>c>1,且a、b、c成等差數(shù)列,求證:
(3)(本小題只理科做)若f(x) 單調(diào)遞增,且m>n>0時(shí),有,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)若a,b,c是兩兩不相等的正數(shù),且a,b,c成等比數(shù)列,試判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

記函數(shù),,它們定義域的交集為,若對(duì)任意的,,則稱(chēng)是集合的元素.
(1)判斷函數(shù)是否是的元素;
(2)設(shè)函數(shù),求的反函數(shù),并判斷是否是的元素;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求該函數(shù)的定義域和值域;
(2)如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(其中
(I)求函數(shù)f(x)的反函數(shù)
(II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;
(III)若不等式對(duì)于區(qū)間上的每一個(gè)x值都成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;                                                    
(2)若關(guān)于的方程在區(qū)間上有實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地為促進(jìn)淡水魚(yú)養(yǎng)殖業(yè)的發(fā)展,將價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)淡水魚(yú)養(yǎng)殖提供政府補(bǔ)貼.設(shè)淡水魚(yú)的市場(chǎng)價(jià)格為元/千克,政府補(bǔ)貼為元/千克.根據(jù)市場(chǎng)調(diào)查,當(dāng)時(shí),淡水魚(yú)的市場(chǎng)日供產(chǎn)量千克與市場(chǎng)日需求量千克近似地滿(mǎn)足關(guān)系:
,,
,
當(dāng)時(shí)的市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格.
(1)  將市場(chǎng)平衡價(jià)格表示為政府補(bǔ)貼的函數(shù),并求出函數(shù)的定義域;
(2)  為使市場(chǎng)平衡價(jià)格不高于每千克10元,政府補(bǔ)貼至少為每千克多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案