若函數(shù)f(x)對(duì)于任意的x∈R都有f(x+3)=-f(x+1),且f(3)=2015,則f(f(2015)-2]+1=(  )
A、-2015B、-2014
C、2014D、2015
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用已知條件求出函數(shù)的周期,然后求解f(2015)的值,即可求解所求表達(dá)式的值.
解答: 解:函數(shù)f(x)對(duì)于任意的x∈R都有f(x+3)=-f(x+1),
可得f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),
函數(shù)的周期為4.
f(2015)=f(504×4-1)=f(-1)=f(3)=2015.
f(f(2015)-2]+1=f(2015-2)+1=f(2013)+1=f(503×4+1)+1=f(1)+1=-f(3)+1=-2015+1=-2014.
故選:B.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,函數(shù)的周期以及函數(shù)的值的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題“若存在x0≥4,不等式(x-a)•(x+1)≤2-a成立“的逆否命題為真,則實(shí)數(shù)a的取值范圍是( 。
A、[
9
2
,+∞)
B、(-∞,
9
2
]
C、[
7
2
,+∞)
D、(-∞,
7
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=sinl,b=tanl,c=tan
9
2
,則a,b,c的大小關(guān)系正確的是( 。
A、c<b<a
B、c<a<b
C、a<v<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b>0,下列選項(xiàng)正確的是(  )
A、a+b>2a
B、a+c<b+c
C、|a|<|b|
D、a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=tan(x+
π
6
),則f(x)的最小正周期為
 
;f(
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:3x-2y+5=0,點(diǎn)A(1,-2),求下列問(wèn)題:
(1)點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo);
(2)直線l關(guān)于點(diǎn)A(1,-2)對(duì)稱的直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足2x+2+4y=2x+2y+1,則2x+4y的最小值是(  )
A、4
B、
9
2
C、6
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-x-alnx,a∈R.
(1)若f(x)在區(qū)間[
1
3
,+∞)上單調(diào)遞增,求a的取值范圍;
(2)試討論f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x<1”是“x2-3x+2>0”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案