6.某學校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數(shù)按分組,其頻率分布直方圖如圖所示,學校要求每名教師都要參加兩項培訓,培訓結(jié)束后進行結(jié)業(yè)考試.已知各年齡段兩項培訓結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如表示,假設兩項培訓是相互獨立的,結(jié)業(yè)考試成績也互不影響.
年齡分組A項培訓成績優(yōu)秀人數(shù)B項培訓成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求從年齡段[20,30)抽取的人數(shù);
(2)求全校教師的平均年齡;
(3)隨機從年齡段[20,30)和[30,40)內(nèi)各抽取1人,設這兩人中兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的概率分布和數(shù)學期望.

分析 (1)由頻率分布直方圖能求出從年齡段[20,30)抽取的人數(shù).
(2)由頻率分布直方圖能求出全校教師的平均年齡.
(3)由題設知X的可能取值為0,1,2.分別求出相應的概率,由此能求出X的概率分布列和數(shù)學期望.

解答 解:(1)由頻率分布直方圖知,0.35×40=14.…(2分)
(2)由頻率分布直方圖得:
全校教師的平均年齡為:
25×0.35+35×0.4+45×0.15+55×0.1=35.…(4分)
(3)∵在年齡段[20,30)內(nèi)的教師人數(shù)為120×0.35=42(人),從該年齡段任取1人,
由表知,此人A項培訓結(jié)業(yè)考試成績優(yōu)秀的概率為$\frac{30}{42}=\frac{5}{7}$,
B項培訓結(jié)業(yè)考試成績優(yōu)秀的概率為$\frac{18}{42}=\frac{3}{7}$,
∴此人A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的概率為$\frac{5}{7}×\frac{3}{7}=\frac{15}{49}$,…(6分)
∵在年齡段[30,40)內(nèi)的教師人數(shù)為120×0.4=48(人),
從該年齡段任取1人,由表知,此人A項培訓結(jié)業(yè)考試成績優(yōu)秀的概率為$\frac{36}{48}=\frac{3}{4}$,
B項培訓結(jié)業(yè)考試成績優(yōu)秀的概率為$\frac{24}{48}=\frac{1}{2}$,
∴此人A、B兩項培訓結(jié)業(yè)考試成績都優(yōu)秀的概率為$\frac{3}{4}×\frac{1}{2}=\frac{3}{8}$…(8分)
由題設知X的可能取值為0,1,2.
∴$P(X=0)=(1-\frac{15}{49})(1-\frac{3}{8})=\frac{85}{196},P(X=1)=\frac{15}{49}×(1-\frac{3}{8})+(1-\frac{15}{49})×\frac{3}{8}=\frac{177}{392}$,
$P(X=2)=\frac{15}{49}×\frac{3}{8}=\frac{45}{392}$,…(10分)
∴X的概率分布為

X012
P$\frac{85}{196}$$\frac{177}{392}$$\frac{45}{392}$
X的數(shù)學期望為$EX=0×\frac{85}{196}+1×\frac{177}{392}+2×\frac{45}{392}=\frac{267}{392}$…(12分)

點評 本題考查頻率分布直方圖的應用,考查離散型隨機變量的求法,是中檔題,解題時要認真審題,注意相互獨立事件乘法公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.曲線y=x2與y=$\sqrt{x}$圍成的圖形繞x軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積是$\frac{3π}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦點為F1,F(xiàn)2,點P在橢圓上,且滿足|PO|2=|PF1|•|PF2|( O為坐標原點),則稱點P為“●”點,則此橢圓上的“●”點有( 。
A.8個B.4個C.2個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為$\frac{1}{3}$,賠錢的概率是$\frac{2}{3}$;乙股票賺錢的概率為$\frac{1}{4}$,賠錢的概率為$\frac{3}{4}$.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知三棱錐三視圖如圖所示,其中俯視圖是邊長為$\sqrt{3}$的正三角形,則該幾何體的外接球的體積為( 。
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.4$\sqrt{3}$D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.拋擲一枚硬幣,記$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,則E(X)=( 。
A.0B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中是偶函數(shù)且值域為(0,+∞)的函數(shù)是( 。
A.y=|tanx|B.y=lg$\frac{x+1}{x-1}$C.y=x${\;}^{\frac{1}{3}}$D.y=x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,橢圓的右焦點F(c,0),橢圓的右頂點為A,上頂點為B,原點到直線AB的距離為$\frac{\sqrt{6}}{3}$.
(I)求橢圓C的方程;
(Ⅱ)判斷在x軸上是否存在異于F的一點G,滿足過點G且斜率為k(k≠0)的直線l與橢圓C交于M、N兩點,P是點M關于x軸的對稱點,N、F、P三點共線,若存在,求出點G坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案