精英家教網 > 高中數學 > 題目詳情
11.已知三棱錐三視圖如圖所示,其中俯視圖是邊長為$\sqrt{3}$的正三角形,則該幾何體的外接球的體積為(  )
A.$\frac{16π}{3}$B.$\frac{32π}{3}$C.4$\sqrt{3}$D.16π

分析 由已知中的三視圖,可得正視圖底邊對應棱的中點,到三棱錐各個頂點的距離相等,進而求出球半徑,可得表面積.

解答 解:由已知中的三視圖,可得該幾何體的直觀圖如下圖所示:

取AB的中點F,AF的中點E,
由三視圖可得:AB垂直平面CDE,且平面CDE為$\sqrt{3}$的正三角形,AB=1+3=4,
∴AF=BF=2,EF=1,
∴CF=DF=$\sqrt{{1}^{2}+{\sqrt{3}}^{2}}$=2,
故F即為棱錐外接球的球心,半徑R=2,
故外接球的體積S=$\frac{4}{3}$πR3=$\frac{22}{3}$π,
故選:B

點評 本題考查的知識點是由三視圖,求體積和表面積,根據已知的三視圖,判斷幾何體的形狀是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.三棱錐P-ABC的四個頂點都在半徑為5的球面上,底面ABC所在的小圓面積為9π,則該三棱錐的高的最大值為( 。
A.7B.8C.8.5D.9

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,且過點$(1,\frac{3}{2})$,其長軸的左右兩個端點分別為A,B,直線l:y=$\frac{3}{2}$x+m交橢圓于兩點C,D.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線AD,CB的斜率分別為k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,它的四個頂點構成的四邊形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設橢圓C的右焦點為F,過F作兩條互相垂直的直線l1,l2,直線l1與橢圓C交于P,Q兩點,直線l2與直線x=4交于N點.
(1)求證:線段PQ的中點在直線ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.某學校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數按分組,其頻率分布直方圖如圖所示,學校要求每名教師都要參加兩項培訓,培訓結束后進行結業(yè)考試.已知各年齡段兩項培訓結業(yè)考試成績優(yōu)秀的人數如表示,假設兩項培訓是相互獨立的,結業(yè)考試成績也互不影響.
年齡分組A項培訓成績優(yōu)秀人數B項培訓成績優(yōu)秀人數
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求從年齡段[20,30)抽取的人數;
(2)求全校教師的平均年齡;
(3)隨機從年齡段[20,30)和[30,40)內各抽取1人,設這兩人中兩項培訓結業(yè)考試成績都優(yōu)秀的人數為X,求X的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.袋中有5只大小相同的乒乓球,編號為1至5,從袋中隨機抽取3只,若以ξ表示取到球中的最大號碼,則ξ的數學期望是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.設a>0,若$\underset{lim}{n→∞}$$\frac{1+\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n-1}}}{1+a+{a}^{2}+…{a}^{n-1}}$$≤\frac{1}{2}$,則a的取值范圍是[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.如圖所示,在平面四邊形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°,則四邊形ABCD的面積的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知中心在坐標原點的橢圓C的右焦點為F(1,0),點F關于直線y=$\frac{1}{2}$x的對稱點在橢圓C上,則橢圓C的方程為$\frac{5{x}^{2}}{9}$+$\frac{5{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習冊答案