A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
分析 根據(jù)兩角和的正切函數(shù)的公式求出tan(A+B)的值,根據(jù)三角形的內(nèi)角和定理得到A+B的度數(shù)即可得到C的度數(shù),然后利用先切互化公式求出sinB和sinA,再根據(jù)正弦定理求出b,利用三角形面積公式求出三角形的面積即可.
解答 解:∵tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,
∴由tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=1,
∵在△ABC中,0<A+B<π,
∴A+B=$\frac{π}{4}$,則C=$\frac{3π}{4}$;
∵由tanB=$\frac{1}{3}$,得sinB=$\frac{\sqrt{10}}{10}$,由tanA=$\frac{1}{2}$,得sinA=$\frac{\sqrt{5}}{5}$,
∵c=$\sqrt{5}$,
∴由正弦定理$\frac{sinB}=\frac{c}{sinC}$,得b=1,
∴△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×\sqrt{5}×\frac{\sqrt{5}}{5}$=$\frac{1}{2}$.
故選:A.
點評 本題主要考查了學生會根據(jù)三角函數(shù)的值求對應的角,靈活運用先切互化的公式解決問題,以及會用正弦定理求三角形的面積,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}}]$ | B. | [-1,1] | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,$\frac{1}{e+1}$) | C. | ($\frac{e}{{e}^{2}+1}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com