A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 由題意可得,$\overrightarrow{BC}$=(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),|$\overrightarrow{BA}$|=1,|$\overrightarrow{BC}$|=1,再利用兩個向量的數(shù)量積公式、兩個向量的數(shù)量積的定義求得 cos∠ABC 的值,可得∠ABC 的值.
解答 解:∵向量$\overrightarrow{BA}=({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$,$\overrightarrow{CB}=({\frac{{\sqrt{3}}}{2},\frac{1}{2}})$,∴$\overrightarrow{BC}$=(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),|$\overrightarrow{BA}$|=1,|$\overrightarrow{BC}$|=1,
∴$\overrightarrow{BA}•\overrightarrow{BC}$=-$\frac{\sqrt{3}}{2}$•$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$•(-$\frac{1}{2}$)=1×1×cos∠ABC,∴cos∠ABC=-$\frac{\sqrt{3}}{2}$,∴∠ABC=150°,
故選:D.
點評 本題主要考查兩個向量的數(shù)量積公式、兩個向量的數(shù)量積的定義,根據(jù)三角函數(shù)的值求角,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ρ=1+ρcosθ | B. | ρ=1+cosθ | C. | ρ=1+2ρcos θ | D. | ρ=1+2cos θ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com