分析 (1)求得f(x)的導(dǎo)數(shù),由題意可得f′(1)=f′(-1)=0,f′(0)=-3,解方程可得a,b,c,進而得到f(x)的解析式;
(2)設(shè)切點為(t,t3-3t),求得f′(x)=3x2-3,可得切線的斜率,由點斜式方程可得切線的方程,代入A的坐標(biāo),整理可得m=-2t3+6t2-6.設(shè)g(t)=-2t3+6t2-6,求出導(dǎo)數(shù),單調(diào)區(qū)間和極值,畫出y=g(t)的圖象,討論m的范圍,即可得到所求切線的條數(shù).
解答 解 (1)f′(x)=3ax2+2bx+c,
由題意可得$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c=0}\\{f′(0)=c=-3}\end{array}\right.$,
解方程可得a=1,b=0,c=-3.
所以f(x)=x3-3x.
(2)設(shè)切點為(t,t3-3t),由(1)知f′(x)=3x2-3,
所以切線斜率k=3t2-3,
切線方程為y-(t3-3t)=(3t2-3)(x-t).
又切線過點A(2,m),代入得m-(t3-3t)=(3t2-3)(2-t),
解得m=-2t3+6t2-6.
設(shè)g(t)=-2t3+6t2-6,令g′(t)=0,即-6t2+12t=0,解得t=0或t=2.
當(dāng)t變化時,g′(t)與g(t)的變化情況如下表:
t | (-∞,0) | 0 | (0,2) | 2 | (2,+∞) |
g′(t) | - | 0 | + | 0 | - |
g(t) | ↘Φ | 極小值 | ↗Γ | 極大值 | ↘Φ |
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查函數(shù)方程的轉(zhuǎn)化思想,以及數(shù)形結(jié)合的思想方法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (π,0) | B. | (π,2π) | C. | (-π,0) | D. | (-2π,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x≤3} | B. | {x|0≤x<4} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com