1.若$\frac{{|{sinx}|}}{sinx}$+$\frac{cosx}{{|{cosx}|}}$+$\frac{tanx}{{|{tanx}|}}$=-1,則角x一定位于( 。
A.第一或第二或第三象限B.第二或第三或第四象限
C.第二象限或第三象限D.第三象限或第四象限

分析 根據(jù)各象限的三角函數(shù)值的正號(hào)符號(hào)法則“一全正,二正弦,三正切,四余弦”即可得到答案.

解答 解:當(dāng)x是第一象限角時(shí),$\frac{{|{sinx}|}}{sinx}$+$\frac{cosx}{{|{cosx}|}}$+$\frac{tanx}{{|{tanx}|}}$=3≠-1,故角x一定不是第一象限角;
當(dāng)x是第二象限角時(shí),$\frac{{|{sinx}|}}{sinx}$+$\frac{cosx}{{|{cosx}|}}$+$\frac{tanx}{{|{tanx}|}}$=1-1-1=-1,即x可以是第二象限角;
同理可得,當(dāng)x是第三象限角或x是第四象限角時(shí),都有$\frac{{|{sinx}|}}{sinx}$+$\frac{cosx}{{|{cosx}|}}$+$\frac{tanx}{{|{tanx}|}}$=-1,即x可以是第三象限角或是第四象限角.
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)值的符號(hào),掌握三角函數(shù)值的正號(hào)符號(hào)法則是解決問(wèn)題的根本,考查分類討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在等差數(shù)列{an}中,a2+a6=$\frac{3π}{2}$,則sin(2a4-$\frac{π}{3}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.路燈距地平面為8m,一個(gè)身高為1.6m的人以2m/s的速率在地平面上,從路燈在地平面上射影點(diǎn)C開(kāi)始沿某直線離開(kāi)路燈,那么人影長(zhǎng)度的變化速率v為( 。
A.$\frac{7}{20}$m/sB.$\frac{7}{24}$m/sC.$\frac{7}{22}$m/sD.$\frac{1}{2}$m/s

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求函數(shù)y=sin(2x-$\frac{π}{3}$)的周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)a∈Z,且0≤a<13,若1220+a能被13整除,則a=( 。
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知等差數(shù)列{an},a2=3,a3+a5=14.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知i為虛數(shù)單位,|$\frac{a+i}{i}$|=2,則正實(shí)數(shù)a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow$=(-1,y-1),且$\overrightarrow{a}$+2$\overrightarrow$=(0,1),則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.不等式(x+2)${\;}^{-\frac{5}{3}}$>(1-2x)${\;}^{-\frac{5}{3}}$的解集為($-2,-\frac{1}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案