10.已知向量$\overrightarrow{a}$=(x,3),$\overrightarrow$=(-1,y-1),且$\overrightarrow{a}$+2$\overrightarrow$=(0,1),則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

分析 根據(jù)向量坐標公式結合向量模長公式進行計算即可.

解答 解:由$\overrightarrow{a}$=(x,3),$\overrightarrow$=(-1,y-1),得$\overrightarrow{a}$+2$\overrightarrow$=(x-2,2y+1)=(0,1),
所以x-2=0,2y+1=1,即x=2,y=0,
所以$\overrightarrow{a}$+$\overrightarrow$=(2,3)+(-1,-1)=(1,2),故|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點評 本題主要考查向量模長的計算,根據(jù)向量坐標公式建立方程求出x,y的值是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.若A(-4,2),B(6,-4),C(12,6),D(2,12),下面四個結論正確的個數(shù)是( 。
①AB∥CD;
②AB⊥AD;
③|AC|=|BD|;
④AC⊥BD.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若$\frac{{|{sinx}|}}{sinx}$+$\frac{cosx}{{|{cosx}|}}$+$\frac{tanx}{{|{tanx}|}}$=-1,則角x一定位于( 。
A.第一或第二或第三象限B.第二或第三或第四象限
C.第二象限或第三象限D.第三象限或第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在直角坐標系xOy中,已知△ABC的頂點A(-6,0)和C(6,0),若頂點B在雙曲線$\frac{x^2}{25}$-$\frac{y^2}{11}$=1的左支上,則$\frac{|BC|-|AB|}{|AC|}$=( 。
A.$\frac{5}{6}$B.$-\frac{5}{6}$C.$\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.以下四個命題中,真命題的是(  )
A.?x∈(0,π),使sinx=tanx
B.“對任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1<0”
C.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)
D.△ABC中,“sinA+sinB=cosA+cosB”是“C=$\frac{π}{2}$”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A{x|x2-2x≥0},B{x|0≤1gx<2},則(∁RA)∩B是(  )
A.{x|2≤x<10}B.{x|x≥2}C.{x|1≤x<2}D.{x|0<x<10}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(4-n,2),m>0,n>0,若$\overrightarrow{a}$∥$\overrightarrow b$,則$\frac{1}{m}$+$\frac{8}{n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-2),x≥1}\end{array}\right.$則f(log27)的值為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知sin(π-α)-cos(π-α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求下列各式的值:
(1)sinα•cosα;
(2)sinα-cosα.

查看答案和解析>>

同步練習冊答案