16.計算:1-2sin2105°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用誘導(dǎo)公式,降冪公式,特殊角的三角函數(shù)值即可化簡求值得解.

解答 解:1-2sin2105°=1-2sin275°=1-(1-cos150°)=-cos30°=-$\frac{\sqrt{3}}{2}$.
故選:C.

點(diǎn)評 本題主要考查了誘導(dǎo)公式,降冪公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,一個空間幾何體的正視圖、側(cè)視圖、俯視圖均為全等的等腰直角三角形,若直角三角形的直角邊為2,那么這個幾何體的表面積為( 。
A.$\frac{4}{3}$B.6+2$\sqrt{2}$C.6+2$\sqrt{3}$D.12+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)(x-$\frac{2}{\sqrt{x}}$)6的展開式中x3的系數(shù)為A,則A的值為(  )
A.60B.-60C.15D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+$\sqrt{cos2016π}$的值域是{0,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若${∫}_{2}^{3}$(3x2-2mx)dx=34,則m等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=4cos(θ+$\frac{π}{4}$).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點(diǎn)作曲線C的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=e-x-alnx在定義域內(nèi)單調(diào)遞增,則a的取值范圍為(-∞,-$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若存在實(shí)數(shù)a∈(1,2]使得關(guān)于x的方程f(x)-tf(2a)=0有三個不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\frac{{{{cos}^2}(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)•sin(π+α)}}$=$\frac{1}{2}$.
(Ⅰ)求tanα的值;
(Ⅱ)求sin2α+cos2α的值.

查看答案和解析>>

同步練習(xí)冊答案