20.已知角α=-$\frac{π}{4}$,則α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 利用角的大小,判斷所在象限即可.

解答 解:角α=-$\frac{π}{4}$,則α是第四象限角.
故選:D.

點評 本題考查象限角的判斷,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知f(x)=$\frac{1}{3}$x3+3xf′(2),則f′(1)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.用2種不同的顏色給圖中的3個圓隨機涂色,每個圓只涂1種顏色,則相鄰的兩個圓顏色均不相同的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.實數(shù)x、y滿足$\left\{\begin{array}{l}{x+y≥3}\\{x≤2}\\{y≤2}\end{array}\right.$ 則函數(shù)z=$\frac{x+y}{3x-y}$的值域為[$\frac{3}{5},3$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設a1,a2,b1,b2都是非零實數(shù),則“$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$”是“不等式a1x+b1>0與a2x+b2>0的解集相同”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是公差d≠0的等差數(shù)列,a2、a6、a22成等比數(shù)列,a4+a6=26.
(1)求數(shù)列{an}的通項公式:
(2)令$_{n}{=2}^{n-1}{•a}_{n}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{2}{x}$+alnx-2(a>0)
(1)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的
單調(diào)區(qū)間;
(2)若對?x∈(0,+∞),都有f′(x)≤($\frac{x+1}{x}$)2恒成立,試求實數(shù)a的取值范圍;
(3)記g(x)=f(x)+x-b,當a=1時,函數(shù)g(x)在區(qū)間[e-1,e]上有兩個零點,求實數(shù)b的取值范圍(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{2-x}{x-1}$+aln(x-1)(a∈R).
(Ⅰ) 若函數(shù)f(x)在區(qū)間[2,+∞)上是單調(diào)遞增函數(shù),試求實數(shù)a的取值范圍;
(Ⅱ) 當x∈[2,+∞)時,求證:$\frac{x-2}{x-1}$≤2ln(x-1)≤2x-4;
(Ⅲ) 求證:$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{2n}$<lnn<1+$\frac{1}{2}$+…+$\frac{1}{n-1}$(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=a•ex+x2-bx(a,b∈R,e=2.71828…是自然對數(shù)的底數(shù)),其導函數(shù)為y=f′(x).
(1)設a=-1,若函數(shù)y=f(x)在R上是單調(diào)減函數(shù),求b的取值范圍;
(2)設b=0,若函數(shù)y=f(x)在R上有且只有一個零點,求a的取值范圍;
(3)設b=2,且a≠0,點(m,n)(m,n∈R)是曲線y=f(x)上的一個定點,是否存在實數(shù)x0(x0≠m),使得f(x0)=f′($\frac{{x}_{0}+m}{2}$)(x0-m)+n成立?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案