點P是橢圓
x2
144
+
y2
169
=1
上的任意一點,F(xiàn)1、F2是橢圓的兩個焦點,則△PF1F2面積的最大值為
 
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意方程可知橢圓是焦點在y軸上的橢圓,求出焦距及短半軸長,代入三角形面積公式得答案.
解答: 解:由橢圓
x2
144
+
y2
169
=1
,得a=12,b=13,
c2=a2-b2=25,c=5.
設(shè)P(x,y),
S△PF1F2=
1
2
|F1F2||x|

當(dāng)|x|=12時,△PF1F2面積有最大值為
1
2
×10×12=60

故答案為:60.
點評:本題考查了橢圓的簡單幾何性質(zhì),解答此題的關(guān)鍵是注意橢圓焦點在y軸上,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)系式正確的個數(shù)是( 。
①0?{0,1};②∅=(∅);③{∅}?{0,1};④∅∈{∅};⑤0⊆{0};⑥∅?{∅}.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若冪函數(shù)f(x)=xm2-4m(m∈Z)的圖象與x軸,y軸無交點,且圖象關(guān)于原點對稱,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的離心率e=
2
3
3
,
(1)求雙曲線的漸近線方程;
(2)若原點到直線
x
a
-
y
b
=1的距離為
3
2
,求曲線的方程式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x
3a
+
y
4a
≤1
x≥0
y≥0
,若z=|
x+2y+3
x-1
|的最小值為3,則a的值為( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A垂直于底面ABC,AC=3,BC=4,AB=5,AA1=4點D是AB的中點,
(1)求證:AC1∥平面CDB1
( 2)求證:BC1⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點M(1,-4)與圓(x-1)2+(y+3)2=1相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2x+1)ln(2x+1)-a(2x+1)2-x(a>0).
(1)若函數(shù)f(x)在x=0處取極值,求a的值;
(2)如圖,設(shè)直線x=-
1
2
,y=-x將坐標(biāo)平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四個區(qū)域(不含邊界),若函數(shù)y=f(x)的圖象恰好位于其中一個區(qū)域內(nèi),判斷其所在的區(qū)域并求對應(yīng)的a的取值范圍;
(3)比較32×43×54×…×20142013與23×34×45×…×20132014的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=
3
(x-2)和雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)交于A,B兩點,且|AB|=
3
,又l關(guān)于直線l1:y=
b
a
x對稱的直線l2與x軸平行.
(1)求雙曲線C的離心率;
(2)求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案