如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A垂直于底面ABC,AC=3,BC=4,AB=5,AA1=4點D是AB的中點,
(1)求證:AC1∥平面CDB1;
( 2)求證:BC1⊥平面AB1C.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關系與距離
分析:(1)根據(jù)線面平行的判定定理即可證明AC1∥平面CDB1
( 2)根據(jù)線面垂直的判定定理即可證明BC1⊥平面AB1C.
解答: (1)設CB1與C1B的交點為E,連結(jié)DE,
∵D是AB的中點,E是BC1的中點,
∴DE∥AC1
∵DE?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1---------------------------(4分)
(2)三棱柱ABC-A1B1C1中,底面三邊長AC=3,BC=4,AB=5,
∴AC2+BC2=AB2∴AC⊥BC,--------------①
又側(cè)棱垂直于底面ABC,∴CC1⊥AC---------------②
∴AC⊥面BCC1∴AC⊥BC1;-------------(8分)
又BC=CC1,∴BC1⊥CB1
∴BC1⊥平面AB1C.-------------(8分)
點評:本題考查線面平行,考查線面垂直的判定,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“a≠2”是“關于x,y的二元一次方程組
ax+2y=3
x+(a-1)y=1
有唯一解”的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-1,-3),B(1,1)求直線AB與直線x+y-5=0的交點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l:y=(a+1)x-1與曲線C:y2=ax恰好有一個公共點,試求實數(shù)a的取值集合,并指出a=0,a=-1時a的幾何意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是橢圓
x2
144
+
y2
169
=1
上的任意一點,F(xiàn)1、F2是橢圓的兩個焦點,則△PF1F2面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x-1)2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(0,+∞),f(x)≥ax2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax+b(x2+1)log2x
1+x2
有最大值2,其中a,b為常數(shù),則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖1和圖2中的四邊形ABCD和AEFG都是正方形.
(1)如圖1,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論;
(2)在圖1的基礎上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sin(
x
3
+
φ
3
)(φ∈(0,2π])是偶函數(shù),則φ=
 

查看答案和解析>>

同步練習冊答案