4.給出命題:
①在空間中,垂直于同一平面的兩個平面平行;
②設l,m是不同的直線,α是一個平面,若l⊥α,l∥m,則m⊥α;
③已知α,β表示兩個不同平面,m為平面α內(nèi)的一條直線,“α⊥β”是“m⊥β”的充要條件;
④在三棱錐S-ABC中,SA⊥BC,SB⊥AC,則S在平面ABC內(nèi)的射影是△ABC的垂心;
⑤a,b是兩條異面直線,P為空間一點,過P總可以作一個平面與a,b之一垂直,與另一條平行.
其中,正確的命題是②④.(只填序號)

分析 ①根據(jù)線面垂直的性質(zhì)進行判斷,
②根據(jù)線面垂直的判定定理進行判斷,
③根據(jù)面面垂直和線面垂直的關系以及充分條件和必要條件的定義進行判斷,
④根據(jù)線面垂直的性質(zhì)結(jié)合三角形垂線的性質(zhì)進行判斷,
⑤根據(jù)異面直線的性質(zhì)以及線面平行和線面垂直的性質(zhì)進行判斷.

解答 解:①在空間中,垂直于同一平面的兩個平面平行或相交,故①錯誤;
②設l,m是不同的直線,α是一個平面,若l⊥α,l∥m,根據(jù)直線平行和線面垂直的性質(zhì)得m⊥α;故②正確,
③已知α,β表示兩個不同平面,m為平面α內(nèi)的一條直線,根據(jù)面面垂直的判定定理得若m⊥β,則α⊥β,反之,不一定成立,即,“α⊥β”是“m⊥β”的必要不充分條件,故③錯誤;
④在三棱錐S-ABC中,過S作SO⊥平面ABC,連接AO,BO,
則SO⊥BC,
∵SA⊥BC,SA∩AO=A,
∴BC⊥平面SAO,BC⊥AO,
∵SB⊥AC,∴同理可得AC⊥BO,
即S在平面ABC內(nèi)的射影是△ABC的垂心;故④正確,

⑤a,b是兩條異面直線,P為空間一點,過P總可以作一個平面與a,b之一垂直,與另一條平行,錯誤.
只有當a,b垂直時,才能作出滿足條件的平面,否則無法作出,故⑤錯誤,
故正確的是②④,
故答案為:②④.

點評 本題主要考查命題的真假判斷,涉及空間線面平行,垂直以及異面直線的性質(zhì)的應用,考查學生的推理和證明能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.給出以下數(shù)對序列
(1,1)
(1,2)(2,1)
(1,3),(2,2),(3,1)
(1,4),(2,3),(3,2),(4,1)

記第m行的第n個數(shù)對為am,n,如a4,2=(2,3),則ai,j=(j,1+i-j).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2.
(Ⅰ) 若點M的直角坐標為(2,$\sqrt{3}$),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(Ⅱ)設曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x^/}=\sqrt{3}x\\{y^/}=y\end{array}$得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[-$\frac{π}{4},\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-sin2x-2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)函數(shù)y=f(x)的圖象向右移動$\frac{π}{12}$個單位長度后得到以y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.近年來我國電子商務行業(yè)迎來發(fā)展的新機遇.2016年618期間,某購物平臺的銷售業(yè)績高達516億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(Ⅰ)先完成關于商品和服務評價的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?
(Ⅱ)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全好評的次數(shù)為隨機變量X:
①求對商品和服務全好評的次數(shù)X的分布列;
②求X的數(shù)學期望和方差.
附臨界值表:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測值:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關于商品和服務評價的2×2列聯(lián)表:
對服務好評對服務不滿意合計
對商品好評a=80b=40120
對商品不滿意c=70d=1080
合計15050n=200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,若$\sqrt{a+\frac{7}{t}}$=a$\sqrt{\frac{7}{t}}$(a,t均為正實數(shù)),類比以上等式,可推測a,t的值,則t-a=( 。
A.31B.41C.55D.71

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若x,y滿足不等式組$\left\{\begin{array}{l}{2x-3y-6≥0}\\{x+y-3≥0}\\{x≤\frac{7}{2}}\end{array}\right.$,z=x-y的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.將相同的正方體按如圖所示的形狀擺放,從上往下一次為第1層、第2層、第3層…則第5層正方體的個數(shù)是15.

查看答案和解析>>

同步練習冊答案