分析 (1)利用二倍角的正弦公式、余弦公式變形,兩角差的正弦公式化簡解析式即可;
(2)由x的范圍求出$2x-\frac{π}{3}$的范圍,由正弦函數(shù)的圖象與性質求出f(x)在[-$\frac{π}{4},\frac{π}{3}$]上的值域.
解答 解:(1)由題意得,
$f(x)=cosx(\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{2}sinxcosx-\frac{{\sqrt{3}}}{2}{cos^2}x+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{4}sin2x-\frac{{\sqrt{3}}}{4}(1+cos2x)+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{2}sin(2x-\frac{π}{3})$,
∴f(x)的最小正周期為$T=\frac{2π}{2}=π$.
(2)∵$-\frac{π}{4}≤x≤\frac{π}{3}$,∴$-\frac{5π}{6}≤2x-\frac{π}{3}≤\frac{π}{3}$,
∴$-1≤sin(2x-\frac{π}{3})≤\frac{\sqrt{3}}{2},-\frac{1}{2}≤\frac{1}{2}sin(2x-\frac{π}{3})≤\frac{\sqrt{3}}{4}$,
∴f(x)的值域是$[-\frac{1}{2},\frac{{\sqrt{3}}}{4}]$.
點評 本題考查正弦函數(shù)的圖象與性質,三角恒等變換中的公式,考查整體思想,化簡、變形能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | (?p)∧(?q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0對 | B. | 1對 | C. | 2對 | D. | 3對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$+1 | B. | $\sqrt{13}$-1 | C. | 2$\sqrt{3}$+1 | D. | 2$\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com