1.通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
總計(jì)
愛(ài)好402060
不愛(ài)好203050
總計(jì)6050110
由K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,算得K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8.
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

分析 根據(jù)所給的2×2列聯(lián)表得到求觀測(cè)值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測(cè)值公式中,求出觀測(cè)值,同所給的臨界值表進(jìn)行比較,即可得到結(jié)果.

解答 解:由觀測(cè)值K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8>6.635.
∴這個(gè)結(jié)論有0.01=1%的機(jī)會(huì)說(shuō)錯(cuò),
在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”,
故答案選:C.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查對(duì)于觀測(cè)值表的認(rèn)識(shí),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,第1個(gè)圖形是由正三角形“擴(kuò)展”而來(lái)的,第2個(gè)圖形是由正方形“擴(kuò)展”而來(lái)的,第3個(gè)圖形是由正五邊形“擴(kuò)展”而來(lái)的,…,第n個(gè)圖形是由正n+2邊形“擴(kuò)展”而來(lái)的(n∈N*).則在第n個(gè)圖形中共有(n+2)(n+3)個(gè)頂點(diǎn).(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若不等式|x-m|<n(n>0)的解集為(-1,5),求不等式|x+n|>m的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求下列各式的值:
(1)25${\;}^{\frac{1}{2}}$;
(2)64${\;}^{\frac{1}{3}}$;
(3)(-$\frac{8}{27}$)${\;}^{\frac{1}{2}}$;
(4)32${\;}^{-\frac{1}{5}}$;
(5)25${\;}^{\frac{3}{2}}$;
(6)($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$;
(7)27${\;}^{\frac{2}{3}}$;
(8)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1,x∈Q\\ π,x∈{∁_R}Q\end{array}$,下列結(jié)論中不正確的是(  )
A.函數(shù)值域?yàn)閇1,π]B.此函數(shù)不單調(diào)C.此函數(shù)為偶函數(shù)D.方程f[f(x)]=x有兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=$\sqrt{-lg(1-x)}$的定義域?yàn)閇0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知四邊形ABCD為矩形,PA⊥平面ABCD,設(shè)PA=AB=a,BC=2a,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2AA1=4.
(1)求證:平面BDC1∥平面AB1D1;
(2)求點(diǎn)C1到平面AB1D1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF,∠CBA=60°.
(1)求證:DM⊥平面MNA;
(2)若三棱錐A-DMN的體積為$\frac{\sqrt{3}}{3}$,求點(diǎn)A到平面DMN的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案