14.如圖,∠ABC=$\frac{π}{4}$,O為AB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(1)求證:平面PBD⊥平面COD;
(2)求點(diǎn)O到平面BDC的距離.

分析 (1)利用勾股定理得出PD⊥OD,由OC⊥平面ABPD得出OC⊥PD,于是PD⊥平面COD,從而有平面PBD⊥平面COD;
(2)由計(jì)算可求BD,BC,CD的值,利用余弦定理可求cos∠BCD,利用同角三角函數(shù)基本關(guān)系式可求sin∠BCD的值,利用三角形面積公式可求S△BCD,S△BOC的值,利用體積相等VO-BCD=VD-BOC,即可得解點(diǎn)O到平面BDC的距離.

解答 (本題滿分為12分)
證明:(1)由OA=AD=1,則OB=OC=OP=2,
∵AD∥PO,PO⊥平面ABC,
∴AD⊥平面ABC,∴AD⊥AO.∴OD=$\sqrt{2}$,PD=$\sqrt{2}$.
又PO=2,∴PD2+OD2=PO2,∴PD⊥OD.
∵OB=OC,∠ABC=$\frac{π}{4}$,∴OC⊥AB.
∵PO⊥平面ABC,OC?平面ABC,
∴PO⊥AB,又AB?平面ABPD,OP?平面ABPD,AB∩OP=O,
∴OC⊥平面ABPD,∵PD?平面ABPD,
∴OC⊥PD,
又OC?平面COD,DO?平面COD,OC∩OD=O,
∴PD⊥平面COD,∵PD?平面PBD,
∴平面PBD⊥平面COD…6分
(2)由計(jì)算可得:BD=$\sqrt{10}$,BC=2$\sqrt{2}$,CD=$\sqrt{6}$,
所以:cos∠BCD=$\frac{\sqrt{3}}{6}$,
所以:sin∠BCD=$\frac{\sqrt{33}}{6}$,
所以:S△BCD=$\frac{1}{2}×2\sqrt{2}×\sqrt{6}×\frac{\sqrt{33}}{6}$=$\sqrt{11}$,S△BOC=$\frac{1}{2}×2×2=2$,
又因?yàn)椋篤O-BCD=VD-BOC,
所以:$\frac{1}{3}×\sqrt{11}×d$=$\frac{1}{3}×1×2$,解得:d=$\frac{2\sqrt{11}}{11}$.
即點(diǎn)O到平面BDC的距離為$\frac{2\sqrt{11}}{11}$…12分

點(diǎn)評(píng) 本題主要考查了面面垂直的判定,點(diǎn)、線、面間的距離計(jì)算,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.觀察下列式子:1+$\frac{1}{{2}^{2}}$<1+$\frac{1}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<1+$\frac{2}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<1+$\frac{3}{4}$,…,根據(jù)上述規(guī)律,第n個(gè)不等式應(yīng)該為1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<1+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(1)證明:平面A1AD⊥平面BCC1B1
(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC交圓O于點(diǎn)圓B,∠PAB=30°,則圓O的半徑為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,下列命題不正確的是( 。
A.平面ACB1∥平面A1C1D,且兩平面的距離為$\frac{{\sqrt{3}}}{3}$
B.點(diǎn)P在線段AB上運(yùn)動(dòng),則四面體PA1B1C1的體積不變
C.與所有12條棱都相切的球的體積為$\frac{{\sqrt{2}}}{3}$π
D.M是正方體的內(nèi)切球的球面上任意一點(diǎn),N是△AB1C外接圓的圓周上任意一點(diǎn),則|MN|的最小值是$\frac{{\sqrt{3}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.用單位長(zhǎng)的不銹鋼條焊接如圖系列的四面體鐵架,圖中的小圓圈.表示焊接點(diǎn),圖1兩層共4個(gè)焊接點(diǎn),圖2三層共10個(gè)焊接點(diǎn),圖3四層共20個(gè)焊接點(diǎn),以此類推,圖n共有$\frac{n(n+1)(n+2)}{6}$個(gè)焊接點(diǎn)(用含n的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,對(duì)大于等于2的自然數(shù)m的n次冪進(jìn)行如圖方式的“分裂”,如23的“分裂”中最大的數(shù)是5,34的“分裂”中最大的數(shù)是29,那么20163的“分裂”中最大的數(shù)是20162+2015.(寫出算式即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{lnx}|,({0<x≤{e^2}})\\{e^2}+2-x,({x>{e^2}})\end{array}$,存在x1<x2<x3,使f(x1)=f(x2)=f(x3),則$\frac{{f({x_3})}}{{{x_1}{x_2}^2}}$的最大值為$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC中,已知點(diǎn)D在邊BC上,且AD⊥AC,AB=3$\sqrt{2}$,AD=3,sin∠BAC=$\frac{2\sqrt{2}}{3}$.
(1)求BD的長(zhǎng);
(2)求sin∠ACD.

查看答案和解析>>

同步練習(xí)冊(cè)答案