13.若cos100°=k,則tan(-80°)=(  )
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.±$\frac{\sqrt{1-{k}^{2}}}{k}$D.k$\sqrt{1-{k}^{2}}$

分析 由cos100°=k,再利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系即可得解.

解答 解:∵cos100°=k,
∴tan(-80°)=tan100°=$\frac{sin100°}{cos100°}$=$\frac{\sqrt{1-{k}^{2}}}{k}$.
故選:B.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,誘導(dǎo)公式、以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知梯形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,0),B(3,0),C(2,$\sqrt{3}$)和D(1,$\sqrt{3}$),求它的中位線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=-x3+ax2+bx+c的導(dǎo)數(shù)f'(x)滿足f'(-1)=0,f'(2)=9.
(1)求f(x)的單調(diào)區(qū)間;
(2)f(x)在區(qū)間[-2,2]上的最大值為20,求c的值.
(3)若函數(shù)f(x)的圖象與x軸有三個(gè)交點(diǎn),求c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(2x-$\sqrt{x}$)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,則實(shí)數(shù)x的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(2 009)=3,則f(2 011)的值是( 。
A.-1B.-2C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=ex,若f(x)的圖象的一條切線l經(jīng)過點(diǎn)(-1,0),則切線l與x軸、y軸所圍成的三角形的面積是( 。
A.$\frac{2}{e}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某旅行社租用A、B兩種型號(hào)的客車安排900名客人旅行,A、B兩種車輛的載客量分別為36人和60人,租金分別為1200元/輛和1800元/輛,旅行社要求租車總數(shù)不超過21輛,且B型車不多于A型車7輛.則租金最少為(  )
A.23400元B.27000元C.27600元D.28800元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=3,b=2,A=$\frac{π}{3}$,則cosB=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$或$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{3}$或$-\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在數(shù)列中,a1=1,an+1=(-1)n(an+1),記Sn為{an}的前n項(xiàng)和,則S2016=-1008.

查看答案和解析>>

同步練習(xí)冊(cè)答案