12.設(shè)公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=12,a1,a2,a6成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (I)設(shè)等差數(shù)列{an}的公差為d≠0,由a1,a2,a6成等比數(shù)列,可得:$({a}_{1}+d)^{2}={a}_{1}({a}_{1}+5d)$,又S3=12,3a1+3d=12,聯(lián)立解得a1,d.即可得出.
(II)bn=$\frac{6n-1}{(3n+1)^{2}(3n-2)^{2}}$=$\frac{1}{3}$$[\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}}]$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d≠0,∵a1,a2,a6成等比數(shù)列,${a}_{2}^{2}$=a1a6,
∴$({a}_{1}+d)^{2}={a}_{1}({a}_{1}+5d)$,化為:d=3a1
又S3=12,3a1+3d=12,化為a1+d=4,聯(lián)立解得a1=1,d=3.
∴an=1+3(n-1)=3n-2.
(II)bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$=$\frac{6n-1}{(3n+1)^{2}(3n-2)^{2}}$=$\frac{1}{3}$$[\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}}]$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$\frac{1}{3}[(1-\frac{1}{{4}^{2}})$+$(\frac{1}{{4}^{2}}-\frac{1}{{7}^{2}})$+…+$\frac{1}{(3n-2)^{2}}-\frac{1}{(3n+1)^{2}}]$=$\frac{1}{3}[1-\frac{1}{(3n+1)^{2}}]$=$\frac{n(3n+2)}{(3n+1)^{2}}$

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的圖象與函數(shù)g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象的對稱中心完全相同,則φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)求三棱錐E-PAD的體積;
(2)證明:無論點(diǎn)E在邊BC的何處,都有AF⊥PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=log23,b=log46,c=0.4-1.2,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)定義在R上的函數(shù)f(x)滿足:
f(tanx)=$\frac{1}{cos2x}$,則f(${\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…+f(${\frac{1}{2}}$)+f(0)+f(2)+…+f(2015)+f(2016)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知集合A={x||x-2|<1},集合B={x|x2-2>0},則A∩B=($\sqrt{2}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,離心率為$\frac{\sqrt{6}}{3}$,點(diǎn)A,B分別是橢圓與x軸,y軸的交點(diǎn),且原點(diǎn)O到AB的距離為$\frac{\sqrt{6}}{2}$.
(Ⅰ)求橢圓方程;
(Ⅱ)F是橢圓的右焦點(diǎn),過F的直線l交橢圓于M,N兩點(diǎn),當(dāng)直線l繞著點(diǎn)F轉(zhuǎn)動過程中,試問在直線l′:x=3上是否存在點(diǎn)P,使得△PMN是以P為頂點(diǎn)的等腰直角三角形,若存在求出直線l的方程,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(lg0.01)2-log53•log325+log2$\root{3}{4}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在等差數(shù)列{an}中,a1=2,an=17,Sn=209,求n與d.

查看答案和解析>>

同步練習(xí)冊答案