7.設(shè)定義在R上的函數(shù)f(x)滿足:
f(tanx)=$\frac{1}{cos2x}$,則f(${\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…+f(${\frac{1}{2}}$)+f(0)+f(2)+…+f(2015)+f(2016)=1.

分析 由已知中f(tanx)=$\frac{1}{cos2x}$,根據(jù)萬能公式,可得f(x)的解析式,進而可得f(x)+f(  $\frac{1}{x}$)=0,進而可得答案.

解答 解:∵f(tanx)=$\frac{1}{cos2x}$=$\frac{1+ta{n}^{2}x}{1-ta{n}^{2}x}$,
∴f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,f($\frac{1}{x}$)=$\frac{1+(\frac{1}{x})^{2}}{1-(\frac{1}{x})^{2}}$=$\frac{1+{x}^{2}}{{x}^{2}-1}$=-$\frac{1+{x}^{2}}{1-{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=0
∴f(${\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…+f(${\frac{1}{2}}$)+f(0)+f(2)+…+f(2015)+f(2016)=f(0)=1.
故答案為:1.

點評 本題考查的知識點是三角函數(shù)的恒等變換及化簡求值,其中根據(jù)已知求出f(x)的解析式,以及f(x)+f( $\frac{1}{x}$)=0是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“-1<m<1”是“圓(x-1)2+(y-m)2=5被x軸截得的弦長大于2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示.則( 。
A.x=1是最小值點B.x=0是極小值點
C.x=2是極小值點D.函數(shù)f(x)在(1,2)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義集合A={x|2x≥1}},B={x|${{{log}_{\frac{1}{2}}}$x<0},則A∩∁RB=( 。
A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在一個二面角的兩個面內(nèi)都和二面角的棱垂直的兩個向量分別為(0,-1,3),(2,2,4),則這個二面角的余弦值為( 。
A.$\frac{\sqrt{15}}{6}$B.-$\frac{\sqrt{15}}{6}$C.$\frac{\sqrt{15}}{3}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)公差不為零的等差數(shù)列{an}的前n項和為Sn,若S3=12,a1,a2,a6成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售.已知編制一只花籃需要銅絲200米,鐵絲300米;編制一只花盆需要銅絲100米,鐵絲300米.設(shè)該廠用所有原料編制x個花籃,y個花盆.
(1)列出x、y滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若出售一個花籃可獲利300元,出售一個花盆可獲利200元,那么怎樣安排花籃和花盆的編制個數(shù),可使所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{10}$,且$\overrightarrow$•$\overrightarrow{c}$=$5\sqrt{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.任選一個不超過100的正整數(shù)恰為3的倍數(shù)的概率是$\frac{33}{100}$.

查看答案和解析>>

同步練習(xí)冊答案