3.若a,b是異面直線,則下列命題中的假命題為(  )
A.過直線a可以作一個(gè)平面并且只可以作一個(gè)平面α與直線b平行
B.過直線a至多可以作一個(gè)平面α與直線b垂直
C.唯一存在一個(gè)平面α與直線a、b等距
D.可能存在平面α與直線a、b都垂直

分析 在A中,把直線b平移與直線a相交,確定一個(gè)平面平行于b;在B中,只有a、b垂直時(shí)才能作出一個(gè)平面α與直線b垂直;在C中,由唯一性定理得唯一存在一個(gè)平面α與直線a、b等距;在D中:若存在平面α與直線a、b都垂直,則a∥b.

解答 解:由a,b是異面直線,知:
在A中:a,b是兩異面直線,把直線b平移與直線a相交,確定一個(gè)平面,因此經(jīng)過直線a只能作出1個(gè)平面平行于b,故A正確;
在B中:只有a、b垂直時(shí)才能作出一個(gè)平面α與直線b垂直,否則過直線a不可以作一個(gè)平面α與直線b垂直,故B正確;
在C中:由唯一性定理得唯一存在一個(gè)平面α與直線a、b等距,故C正確;
在D中:若存在平面α與直線a、b都垂直,則直線與平面垂直的性質(zhì)定理得a∥b,故D錯(cuò)誤.
故選:D.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a,b滿足alog49=1,3b=8,先化簡(jiǎn)$\frac{({a}^{-1}•^{\frac{11}{2}})^{\frac{1}{3}}•{a}^{-\frac{1}{2}}}{\root{6}{a•^{5}}}$,再求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)$P({\sqrt{2},\;1})$在C上,且PF2⊥x軸.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,原點(diǎn)O在以AB為直徑的圓外,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)A是⊙O上的動(dòng)點(diǎn),點(diǎn)B是⊙O內(nèi)的定點(diǎn)(不與點(diǎn)O重合)PQ垂直平分AB于Q,交OA于點(diǎn)P,則點(diǎn)P的軌跡是(  )
A.直線B.C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx
(1)當(dāng)x≥1時(shí),若f(x)≥a(x-1)恒成立,求a的取值范圍;
(2)求證:當(dāng)n≥2且n∈N*時(shí),$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}<lnn$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等差數(shù)列{an}中,a1+a3+a5=9,a2+a4+a6=15,則數(shù)列{an}的前10項(xiàng)的和等于80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且S2=0,2Sn+n=nan(n∈N*).
(1)計(jì)算a1,a2,a3,a4,并求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1+3b2+5b3+…+(2n-1)bn=2n•an+3,求證:數(shù)列{bn}是等比數(shù)列;
(3)由數(shù)列{an}的項(xiàng)組成一個(gè)新數(shù)列{cn}:c1=a1,c2=a2+a3,c3=a4+a5+a6+a7,…,${c_n}={a_{2{\;^{n-1}}}}+{a_{{2^{\;n-1}}+1}}+{a_{{2^{\;n-1}}+2}}+…+{a_{2{\;^n}-1}}$,….設(shè)Tn為數(shù)列{cn}的前n項(xiàng)和,試求$\lim_{n→∞}\frac{T_n}{4^n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{{\sqrt{6}}}{3}$,焦距為$2\sqrt{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線y=kx+2與橢圓交于C,D兩點(diǎn).問是否存在常數(shù)k,使得以CD為直徑的圓過坐標(biāo)原點(diǎn)O,若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程9x+3x-6=0的實(shí)數(shù)解為 x=log32.

查看答案和解析>>

同步練習(xí)冊(cè)答案