分析 (1)原不等式可化為xlnx≥a(x-1),從而討論x=1與x>1時(shí)不等式成立的條件即可;
(2)根據(jù)lnx>$\frac{x-1}{x}$(x>1),令x=$\frac{n}{n-1}$(n≥2且n∈N*),即ln$\frac{n}{n-1}$>$\frac{1}{n}$,通過賦值疊加即可.
解答 解:(1)f(x)≥a(x-1)(x≥1)可化為
xlnx≥a(x-1),
當(dāng)x=1時(shí),0≥0,顯然成立;
當(dāng)x>1時(shí),不等式可化為a≤$\frac{xlnx}{x-1}$,
令g(x)=$\frac{xlnx}{x-1}$,g′(x)=$\frac{(lnx+1)(x-1)-xlnx}{{(x-1)}^{2}}$=$\frac{x-lnx-1}{{(x-1)}^{2}}$,
令h(x)=x-lnx-1,h′(x)=1-$\frac{1}{x}$,
故h(x)=x-lnx-1在(1,+∞)上是增函數(shù),
故x-lnx-1>1-0-1=0,
故g′(x)=$\frac{x-lnx-1}{{(x-1)}^{2}}$>0;
故g(x)=$\frac{xlnx}{x-1}$在(1,+∞)上是增函數(shù),且 $\underset{lim}{x{→1}^{+}}$$\frac{xlnx}{x-1}$=1,
故a≤1;
(2)當(dāng)a=1時(shí):lnx>$\frac{x-1}{x}$(x>1),
令x=$\frac{n}{n-1}$(n≥2且n∈N*),即ln$\frac{n}{n-1}$>$\frac{1}{n}$,
得:lnn-ln(n-1)>$\frac{1}{n}$,
∴l(xiāng)n(n-1)-ln(n-2)>$\frac{1}{n-1}$,
ln(n-2)-ln(n-3)>$\frac{1}{n-2}$,
…,
ln2-ln1>$\frac{1}{2}$,
上述各式相加得:lnn>$\frac{1}{n}$+$\frac{1}{n-1}$+…+$\frac{1}{3}$+$\frac{1}{2}$,
即當(dāng)n≥2且n∈N*時(shí),$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}<lnn$.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題,同時(shí)考查了極限的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 18 | C. | 2 | D. | 以上均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (0,2) | C. | (0,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 過直線a可以作一個(gè)平面并且只可以作一個(gè)平面α與直線b平行 | |
B. | 過直線a至多可以作一個(gè)平面α與直線b垂直 | |
C. | 唯一存在一個(gè)平面α與直線a、b等距 | |
D. | 可能存在平面α與直線a、b都垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com