3.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=btanA,且B為鈍角.
(1)求B-A的值;
(2)求sinA+sinC的取值范圍.

分析 (1)根據(jù)正弦定理、商的關(guān)系化簡已知的式子,由條件和誘導(dǎo)公式求出B-A的值;
(2)由(1)求出C和A的范圍,由誘導(dǎo)公式和二倍角的余弦公式變形化簡,利用換元法和二次函數(shù)的性質(zhì)求出式子的范圍.

解答 解:(1)由題意得a=btanA,
∴由正弦定理得$sinA=sinB•\frac{sinA}{cosA}$,則sinB=cosA,
∵B為鈍角,∴B=$\frac{π}{2}+A$,
∴B-A=$\frac{π}{2}$;
(2)由(1)知C=π-(A+B)=π-(A+$\frac{π}{2}$+A)=$\frac{π}{2}$-2A>0,
∴A∈(0,$\frac{π}{4}$),
∴sinA+sinC=sinA+sin($\frac{π}{2}$-2A)
=sinA+cos2A=sinA+1-2sin2A
=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,
∵A∈(0,$\frac{π}{4}$),∴0<sinA<$\frac{\sqrt{2}}{2}$,
∴由二次函數(shù)可知,$\frac{\sqrt{2}}{2}$<-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$≤$\frac{9}{8}$,
∴sinA+sinC的取值范圍為($\frac{\sqrt{2}}{2}$,$\frac{9}{8}$]

點(diǎn)評 本題考查三角函數(shù)中恒等變換的應(yīng)用,正弦定理,以及換元法和二次函數(shù)的性質(zhì),熟練掌握公式和定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\\{\;}\end{array}\right.$表示的平面區(qū)域是一個三角形,則a的取值范圍為0<a≤1或a≥$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若直角坐標(biāo)平面內(nèi)A、B兩點(diǎn)滿足:①點(diǎn)A、B都在函數(shù)f(x)的圖象上;②點(diǎn)A、B關(guān)于原點(diǎn)對稱,則點(diǎn)對(A,B)是函數(shù)y=f(x)的一個“姊妹點(diǎn)對”,點(diǎn)對(A,B)與(B,A)可看作同一個“姊妹點(diǎn)對”.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{|x-1|+b,x≥0}\\{\;}\end{array}\right.$,若f(x)的“姊妹點(diǎn)對”有兩個,則b的范圍為( 。
A.-1<b≤1B.-1≤b<1C.-1≤b≤1D.-1<b<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求和:1+2+3+…+n+(n+1)=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=x2(x-3)的單調(diào)區(qū)間為單調(diào)遞增區(qū)間為(-∞,0),(1,+∞),單調(diào)遞減區(qū)間為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)p為正整數(shù),證明:若p不是完全平方數(shù),則$\sqrt{p}$是無理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,我海軍艦隊(duì)在亞丁灣執(zhí)行護(hù)航任務(wù)中位于點(diǎn)A處南偏西38°的方向且距點(diǎn)A3海里的點(diǎn)B處,點(diǎn)A處一海盜船正挾持人質(zhì)以10海里/時的速度向北偏西22°方向航行,現(xiàn)護(hù)航編隊(duì)接到求救信號并開始對其進(jìn)行攔截,假設(shè)成功攔截于點(diǎn)C處.
(1)護(hù)航編隊(duì)朝何方向以多大速度才能恰好用30分鐘成功攔截海盜船;
(2)求由AB,AC,BC圍成海域的面積.
(參考數(shù)據(jù):sin38°=$\frac{5\sqrt{3}}{14}$,sin22°=$\frac{3\sqrt{3}}{14}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)三個向量,其中$\overrightarrow{a}$=(2,1).
(1)若$\overrightarrow$=(1,m),且$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,求實(shí)數(shù)m的值;
(2)若$\overrightarrow{c}$為單位向量,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求向量$\overrightarrow{c}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=(1+x)2-4lnx.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)0<a<2時,求函數(shù)g(x)=f(x)-x2-ax-1在區(qū)間[0,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案