(1)化簡:當(dāng)
2
<α<2π時,
1
2
+
1
2
1
2
+
1
2
cos2α
;
(2)求值:tan10°+tan50°+
3
tan10°tan50°.
考點:兩角和與差的正切函數(shù),三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:(1)利用余弦的倍角公式進(jìn)行化簡即可;
(2)直接根據(jù)兩角和正切公式的變形形式tan(α+β)(1-tanαtanβ)=tanα+tanβ;整理即可得到答案.
解答: 解:(1)∵
2
<α<2π,∴
4
α
2
<π,
1
2
+
1
2
1
2
+
1
2
cos2α

=
1
2
+
1
2
1
2
+
1
2
(2cos2α-1)

=
1
2
+
1
2
cos2α

=
1
2
+
1
2
cosα
=
1
2
+
1
2
[2cos2
α
2
-1]
=
cos2
α
2
=-cos
α
2
;
(2)∵tan10°+tan50°+
3
tan10°tan50°
=tan(10°+50°)(1-tan10°tan50°)+
3
tan10°tan50°
=
3
(1-tan10°tan50°)+
3
tan10°tan50°
=
3
-
3
tan10°tan50°+
3
tan10°tan50°
=
3
點評:本題主要考查兩角和與差的正切公式以及二倍角公式的應(yīng)用.要求熟練掌握相應(yīng)的公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f x=3sin2x+2
3
sinxcosx+5cos2x
(1)若f(α)=5,求tanα的值;
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且(2a-c)cosB=bcosC,求函數(shù)f(x)在(0,B)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2kax+(k-3)a-x (a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(2)<0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范圍;
(3)若f(2)=3,且g(x)=2x+2-x-2mf(x)在[2,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,其側(cè)面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx(a>0),e為自然對數(shù)的底數(shù).
(Ⅰ)若過點A(2,f(2))的切線斜率為2,求實數(shù)a的值;
(Ⅱ)當(dāng)x>0時,求證:f(x)≥a(1-
1
x
);
(Ⅲ)在區(qū)間(1,e)上
f(x)
x-1
>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)x(7-x)≥12;
(2)x2>2(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,有f(x)<0,且f(1)=-2
(1)求f(0)及f(-1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(3)求解不等式f(2x)-f(x2+3x)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax2-(a+2)x+1在區(qū)間(-2,-1)上恰有一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

代數(shù)式
sin(180°-α)
cos(180°+α)
cos(-α)•cos(360°-α)
sin(90°+α)
化簡后的值為( 。
A、cosαB、-cosα
C、sinαD、-sinα

查看答案和解析>>

同步練習(xí)冊答案