化簡(jiǎn)(9x2+6x+1) 
1
2
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過(guò)平方化簡(jiǎn)求解即可.
解答: 解:(9x2+6x+1) 
1
2
=
(3x+1)2
=|3x+1|=
3x+1,x≥-
1
3
-3x-1,x<-
1
3
點(diǎn)評(píng):本題考查有理指數(shù)冪的化簡(jiǎn)求值,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(
1
3
 -(x-m)2+1的單調(diào)增區(qū)間與值域相同,則實(shí)數(shù)m的取值為( 。
A、
1
3
B、3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐V-ABCD的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,E是VA的中點(diǎn),O為底面中心,則異面直線EO、BC所成的角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•5x+(a-2)•5-x
5x+5-x
,其中a為實(shí)常數(shù).
(1)若該函數(shù)為奇函數(shù),求實(shí)數(shù)a的值.
(2)當(dāng)a=-1時(shí),求該函數(shù)的值域并討論該函數(shù)的單調(diào)性,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的不等式ax>1的解集是{x|x<0},q:函數(shù)y=lg(x2+x+a)的定義域?yàn)镽,若p∨q為真p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
3
)+2cos2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)x∈(-
π
2
,0]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,把雙曲線C1
x2
2
-y2=1繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到雙曲線C2,給出下列說(shuō)法:
①C1與C2的離心率相同;②C1與C2的焦點(diǎn)坐標(biāo)相同;③C1與C2的漸近線方程相同;④C1與C2的實(shí)軸長(zhǎng)相等.
其中正確的說(shuō)法有( 。
A、①②B、②③C、①④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC上一點(diǎn),且PE=
1
2
EC,F(xiàn)為AB上一點(diǎn),且AF=2FB,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)若Q為側(cè)棱PC中點(diǎn),求二面角Q-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=loga(x+b)+2,(a>0且a≠1)的圖象恒過(guò)定點(diǎn)(3,2),則實(shí)數(shù)b的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案