13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>3}\\{{2}^{x-3}+1,x≤3}\end{array}\right.$滿足f(a)=3,則f(a-5)的值為$\frac{3}{2}$.

分析 根據(jù)分段函數(shù)的定義,分段討論即可求出答案.

解答 解:當x>3時,f(x)=log2(x+1),
∵f(a)=3
∴a+1=8,解a=7,
f(a-5)=f(2)=22-3+1=$\frac{3}{2}$,
當x≤3時,f(x)=2x-3+1,
∴2a-3+1=3,
解得a=4(舍去)
故答案為:$\frac{3}{2}$

點評 本題考查了分段函數(shù)和函數(shù)值的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.方程x$\sqrt{2{x^2}+2{y^2}-3}$=0所表示的曲線是( 。
A.兩個點和兩條射線B.一條直線和一個圓
C.一個點和一個圓D.兩條射線和一個圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別為a,b,c.已知△ABC的面積為3sinA,周長為4($\sqrt{2}$+1),且sinB+sinC=$\sqrt{2}$sinA.
(1)求a及cosA的值;
(2)求cos(2A-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.向量$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在復平面內(nèi),復數(shù)z滿足(i+1)•z=i2013(i為虛數(shù)單位),則復數(shù)z所表示的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若角θ的終邊過點P(-1,t)(t∈R)且tanθ=-2,則cosθ的值是( 。
A.-$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}中,a1=-7,a2=3,an+2=an-2,則S100=-5100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,則實數(shù)k的取值范圍為k≥6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設兩個函數(shù)f(x)和g(x),其中f(x)是三次函數(shù),且對任意的實數(shù)x,都有f′(x)+2f′(-x)=-9x2-4x-3,f(0)=1,g(x)=$\frac{m}{x}$+xlnx(m≥1).
(1)求函數(shù)f(x)的極值;
(2)證明:對于任意的x1,x2∈(0,+∞)都有f(x1)≤g(x2)成立.

查看答案和解析>>

同步練習冊答案