20.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

分析 分別化直線與橢圓的參數(shù)方程為普通方程,然后聯(lián)立方程組,求出直線與橢圓的交點(diǎn)坐標(biāo),代入兩點(diǎn)間的距離公式求得答案.

解答 解:由$\left\{\begin{array}{l}{x=1+\frac{1}{2}t①}\\{y=\frac{\sqrt{3}}{2}t②}\end{array}\right.$,由②得$t=\frac{2}{\sqrt{3}}y$,
代入①并整理得,$\sqrt{3}x-y-\sqrt{3}=0$.
由$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$,得$\left\{\begin{array}{l}{x=cosθ}\\{\frac{y}{2}=sinθ}\end{array}\right.$,
兩式平方相加得${x}^{2}+\frac{{y}^{2}}{4}=1$.
聯(lián)立$\left\{\begin{array}{l}{\sqrt{3}x-y-\sqrt{3}=0}\\{{x}^{2}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{1}{7}}\\{y=-\frac{8\sqrt{3}}{7}}\end{array}\right.$.
∴|AB|=$\sqrt{(1+\frac{1}{7})^{2}+(0+\frac{8\sqrt{3}}{7})^{2}}=\frac{16}{7}$.

點(diǎn)評(píng) 本題考查直線與橢圓的參數(shù)方程,考查了參數(shù)方程化普通方程,考查直線與橢圓位置關(guān)系的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),若函數(shù)y=|x2-2x-3|與 y=f(x) 圖象的交點(diǎn)為(x1,y1),(x2,y2),…,(xm,ym),則$\sum_{i=1}^{m}$xi=( 。
A.0B.mC.2mD.4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在(-∞,+∞)單調(diào)遞增,則a的取值范圍是( 。
A.[-1,1]B.[-1,$\frac{1}{3}}$]C.[-$\frac{1}{3}$,$\frac{1}{3}}$]D.[-1,-$\frac{1}{3}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知非零向量$\overrightarrow{m}$,$\overrightarrow{n}$滿足4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{3}$.若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實(shí)數(shù)t的值為(  )
A.4B.-4C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,則m的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為(2-p,-p);
②求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是(  )
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年B.2019年C.2020年D.2021年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面內(nèi),定點(diǎn)A,B,C,D滿足$|\overrightarrow{DA}|$=$|\overrightarrow{DB}|$=$|\overrightarrow{DC}|$,$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC}$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,動(dòng)點(diǎn)P,M滿足$|\overrightarrow{AP}|$=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是(  )
A.$\frac{43}{4}$B.$\frac{49}{4}$C.$\frac{37+6\sqrt{3}}{4}$D.$\frac{37+2\sqrt{33}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖是我國(guó)2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1-7分別對(duì)應(yīng)年份2008-2014.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以證明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,
回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t中斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案