設(shè)x,y滿足約束條件
x≥0
x-2y≥0
x-y≤1
,則z=2x+y的最大值是( 。
A、0B、2C、4D、5
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
x-2y=0
x-y=1
,解得
x=2
y=1
,即A(2,1)
將A的坐標(biāo)代入目標(biāo)函數(shù)z=2x+y,
得z=2×2+1=5.即z=2x+y的最大值為5.
故選:D
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列
2
2
,
3
22
,…,
n
2n-1
,
n+1
2n
,…的前n項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若執(zhí)行如圖所示的程序框圖,則輸出的S是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
表示“向東走3km“,
b
表示“向西走1km”,
c
表示“向北走2km”,畫(huà)圖并說(shuō)明下列向量的意義.
(1)
a
+
a
;      
(2)
a
+
b
;       
(3)
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2+3x-3=0的解在區(qū)間( 。
A、(0,1)內(nèi)
B、(1,2)內(nèi)
C、(2,3)內(nèi)
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|
1
x
-1|的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)(2,-1)和直線x+y=1相切,且圓心在直線y=-2x上,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x>-1時(shí),函數(shù)y=x+
1
x+1
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(x1,y1),B(x2,y2),直線l過(guò)定點(diǎn)C(x0,y0),且A與B到l的距離相等,且滿足條件的l的條數(shù)為n,求n的值不可能為(  )
A、1B、2C、3D、大于3的整數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案