8.設(shè)函數(shù)y=f(x)是定義在[-2,2]上的偶函數(shù),當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若f(1-a)<f(a)成立,則實(shí)數(shù)a的取值范圍是$[-1,\frac{1}{2})$.

分析 根據(jù)f(x)為定義在[-2,2]上的偶函數(shù),以及x≥0時(shí)f(x)單調(diào)遞減便可由f(1-a)<f(a)得到$\left\{\begin{array}{l}{-2≤1-a≤2}\\{-2≤a≤2}\\{|1-a|>|a|}\end{array}\right.$,從而解該不等式組便可得出a的取值范圍.

解答 解:∵f(x)為定義在[-2,2]上的偶函數(shù),
∴由f(1-a)<f(a)得,f(|1-a|)<f(|a|),
又x≥0時(shí),f(x)單調(diào)遞減,
∴$\left\{\begin{array}{l}{-2≤1-a≤2}\\{-2≤a≤2}\\{|1-a|>|a|}\end{array}\right.$,
解得-1≤a<$\frac{1}{2}$.
∴a的取值范圍為$[-1,\frac{1}{2})$.
故答案為$[-1,\frac{1}{2})$.

點(diǎn)評(píng) 本題考查偶函數(shù)的定義,函數(shù)定義域的概念,以及根據(jù)函數(shù)單調(diào)性解不等式的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列命題:
①$\vec a$•$\vec 0$=$\vec 0$;
②0•$\vec a$=0;
③$\vec 0$-$\overrightarrow{AB}$=$\overrightarrow{BA}$;
④|$\vec a$•$\vec b$|=|$\vec a$||$\vec b$|;
⑤若$\vec a$≠$\vec 0$,則對(duì)任一非零$\vec b$有$\vec a$•$\vec b$≠0;
⑥$\vec a$•$\vec b$=0,則$\vec a$與$\vec b$中至少有一個(gè)為$\vec 0$;
⑦對(duì)任意向量$\vec a$,$\vec b$,$\vec c$都有($\vec a$•$\vec b$)•$\vec c$=$\vec a$•($\vec b$•$\vec c$);
⑧$\vec a$與$\vec b$是兩個(gè)單位向量,則$\vec a$2=$\vec b$2
其中正確的是③⑧(把正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)求函數(shù)f(x)=4${\;}^{x-\frac{1}{2}}}$-3•2x+5在區(qū)間[-2,2]上的最大值,并求函數(shù)f(x)取得最大值時(shí)的x的取值?
(2)若函數(shù)y=a2x+2ax-1(a>0,a≠1)在區(qū)間[-2,2]上的最大值為14,求實(shí)數(shù)a的值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,點(diǎn)M到F(1,0)的距離比它到y(tǒng)軸的距離大1.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)若在y軸右側(cè),曲線C上存在兩點(diǎn)關(guān)于直線x-2y-m=0對(duì)稱,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=lnx+$\frac{1}{2}$ax2+x+1.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)當(dāng)a=0時(shí),證明:xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-2|x|-3.
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在所給的坐標(biāo)系中畫出該函數(shù)的簡圖;
(3)寫出該函數(shù)的單調(diào)區(qū)間(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)S一枚骰子,出現(xiàn)點(diǎn)數(shù)是奇數(shù)的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程;
(2)曲線C2的極坐標(biāo)方程為θ=$\frac{π}{6}$(ρ∈R),求C1與C2的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=22x-2xa-(a+1).
(1)若a=2,解不等式f(x)<0;
(2)若f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案