分析 根據(jù)f(x)為定義在[-2,2]上的偶函數(shù),以及x≥0時(shí)f(x)單調(diào)遞減便可由f(1-a)<f(a)得到$\left\{\begin{array}{l}{-2≤1-a≤2}\\{-2≤a≤2}\\{|1-a|>|a|}\end{array}\right.$,從而解該不等式組便可得出a的取值范圍.
解答 解:∵f(x)為定義在[-2,2]上的偶函數(shù),
∴由f(1-a)<f(a)得,f(|1-a|)<f(|a|),
又x≥0時(shí),f(x)單調(diào)遞減,
∴$\left\{\begin{array}{l}{-2≤1-a≤2}\\{-2≤a≤2}\\{|1-a|>|a|}\end{array}\right.$,
解得-1≤a<$\frac{1}{2}$.
∴a的取值范圍為$[-1,\frac{1}{2})$.
故答案為$[-1,\frac{1}{2})$.
點(diǎn)評(píng) 本題考查偶函數(shù)的定義,函數(shù)定義域的概念,以及根據(jù)函數(shù)單調(diào)性解不等式的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com