5.已知圓的方程為x2+y2-8x+15=0,若直線y=kx+2上至少存在一點,使得以該點為圓心,半徑為1的圓與圓C有公共點,則k的最小值是( 。
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

分析 圓C的圓心為C(4,0),半徑r=1,從而得到點C到直線y=kx+2的距離小于或等于2,由此能求出k的最小值.

解答 解:∵圓C的方程為x2+y2-8x+15=0,
∴整理得:(x-4)2+y2=1,∴圓心為C(4,0),半徑r=1.
又∵直線y=kx+2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,
∴點C到直線y=kx+2的距離小于或等于2,
∴$\frac{|4k-0+2|}{\sqrt{{k}^{2}+1}}$≤2,
化簡得:3k2+4k≤0,解之得-$\frac{4}{3}$≤k≤0,∴k的最小值是-$\frac{4}{3}$.
故選:A.

點評 本題考查實數(shù)值的最小值的求法,是基礎題,解題時要認真審題,注意直線與圓相交的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,三角形的兩邊分別是2和4,它們夾角的余弦是方程x2-x+$\frac{1}{4}$=0的根,則三角形的另一邊長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.曲線y=x2與y=$\sqrt{x}$圍成的圖形繞x軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積是$\frac{3π}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{6}}{3}$,以其四個頂點為頂點的四邊形的面積等于2$\sqrt{3}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過原點且斜率不為0的直線l與橢圓C交于P,Q兩點,A是橢圓C的右頂點,直線AP,AQ分別與y軸交于點M,N,問:以MN為直徑的圓是否恒過x軸上的定點?若恒過x軸上的定點,請求出該定點的坐標;若不恒過x軸上的定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若存在a∈R,使得|x+a|≤lnx+1在[1,m]上恒成立,則整數(shù)m的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設i是虛數(shù)單位,復數(shù)z滿足z(1+i)=2i,則復數(shù)z的虛部為(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦點為F1,F(xiàn)2,點P在橢圓上,且滿足|PO|2=|PF1|•|PF2|( O為坐標原點),則稱點P為“●”點,則此橢圓上的“●”點有(  )
A.8個B.4個C.2個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結果繪制如下頻率分布直方圖:
(Ⅰ)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);
(Ⅱ)在某場比賽中,考察他前4次投籃命中到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中是偶函數(shù)且值域為(0,+∞)的函數(shù)是( 。
A.y=|tanx|B.y=lg$\frac{x+1}{x-1}$C.y=x${\;}^{\frac{1}{3}}$D.y=x-2

查看答案和解析>>

同步練習冊答案