10.設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=2i,則復(fù)數(shù)z的虛部為(  )
A.-iB.iC.1D.-1

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z(1+i)=2i,
∴$z=\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2i(1-i)}{2}=1+i$,
∴復(fù)數(shù)z的虛部為1.
故選:C.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等比數(shù)列{an}中,a5=24,a1a2a3=27,則有(  )
A.a1=$\frac{3}{2}$,q=2B.a1=-$\frac{3}{2}$,q=2C.a1=2,q=-2D.a1=$\frac{3}{2}$,q=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱錐P-ABC的四個頂點都在半徑為5的球面上,底面ABC所在的小圓面積為9π,則該三棱錐的高的最大值為(  )
A.7B.8C.8.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}+ax+1$,若函數(shù)f(x)在區(qū)間[-2,a]上單調(diào)遞增,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓的方程為x2+y2-8x+15=0,若直線y=kx+2上至少存在一點,使得以該點為圓心,半徑為1的圓與圓C有公共點,則k的最小值是( 。
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.二項式(x+2$\sqrt{y}$)5=a0x5+a1x4$\sqrt{y}$+…+a5y${\;}^{\frac{5}{2}}$,則a1+a3+a5=122.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,且過點$(1,\frac{3}{2})$,其長軸的左右兩個端點分別為A,B,直線l:y=$\frac{3}{2}$x+m交橢圓于兩點C,D.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線AD,CB的斜率分別為k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,它的四個頂點構(gòu)成的四邊形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的右焦點為F,過F作兩條互相垂直的直線l1,l2,直線l1與橢圓C交于P,Q兩點,直線l2與直線x=4交于N點.
(1)求證:線段PQ的中點在直線ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,在平面四邊形ABCD中,AB=4,AD=2,∠DAB=60°,∠BCD=120°,則四邊形ABCD的面積的最大值是3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案